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Network Clustering

O Network Data are ubiquitous

> Web networks
> Social networks
» Biological networks, etc.
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Network Clustering

O Network Clustering

» Detect sub-networks that satisfy
certain properties

» Many connections within clusters
and few connections across
clusters
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Network Clustering

O Network Clustering

» Detect sub-networks that satisfy
certain properties

» Many connections within clusters g
and few connections across Coauthorship network between physicisits
clusters

Figure from “Mark EJ Newman and Michelle Girvan. Finding and
evaluating community structure in networks. Physical review
E 69.2 (2004): 026113.”
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Network Clustering

E. coli community network
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» Detect sub-networks that satisfy

certain properties

» Many connections within clusters
and few connections across

clusters
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Figure from “Daniel Marbach, et al. Wisdom of crowds for robust
gene network inference. Nature methods 9.8 (2012): 796-804.”
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Multi-Network Clustering

U Networks collected from multiple conditions,
sources or domains

» E.g., co-author networks from different
research areas

» E.g., gene co-expression networks from
different tissues of model organisms

. . i . Figure from “Mikko Kivela, et al. Multilayer
O Multi-network C|UStefln9 motivation networks. Journal of Complex Networks 2.3
(2014): 203-271.”

» Single network can be noisy, incomplete and provide partial knowledge

» Multi-network can provide compatible and complementary information

> Multi-network can be robust to noise in individual networks
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Multi-Network Clustering

O Multi-view and multi-domain network clustering?!?

Multi-view networks Multi-domain networks

0 Key assumption

» Different views/domains share the same underlying clustering structure
» Methods are designed to identify consistent clustering structure across all
views/domains

1. Abhishek Kumar, et al., Co-regularized multi-view spectral clustering.
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OF ENGINEERING In NIPS, 2011.
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UNIVERSITY 2. Wei Cheng, et al., Flexible and robust co-regularized multi-domain
graph clustering. In KDD, 2013.




Motivation

O In many emerging applications, different networks have different data

distributions
Domain similarity
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Motivation

O In many emerging applications, different networks have different data
distributions

Skeletal muscle

Domain similarity
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An unrooted tissue distance tree
Figure from “Daniela Bérnigen, et al. Concordance of gene expression in
human protein complexes reveals tissue specificity and pathology. Nucleic
acids research 41.18 (2013): e171-e171.”
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Motivation

O In many emerging applications, different networks have different data
distributions
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A research conference similarity network
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Motivation

O Network of Networks (NoN)

Adjacency matrix G

0 The dashed line network formed by (A to (F
IS called the main network. Denoted as G.
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Motivation

O Network of Networks (NoN)

Q The dashed line network formed by (A1 to (F
C IS called the main network. Denoted as G.

{ «——0 The solid line networks formed by | 1] to [10

@ . Adjacency matrices / are called the domain-specific networks.
NS - ‘\-\ ‘ﬁ/\\—’/ 1
{AD, A®, . AGY Denoted as {A®Y), ..., AW},
D‘ = ! 9 = —E‘
-7 ~~¢ A ST REN
, 9] (\ : /> .
| 3!

A
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Motivation

O Network of Networks (NoN)

Q The dashed line network formed by (A1 to (F
IS called the main network. Denoted as G.

O The solid line networks formed by |1| to [10
are called the domain-specific networks.
Denoted as {AW, ..., A@},

O The goal of this work is to simultaneously
clustering multi-network by using their
multiple underlying clustering structures.

CASE WESTERN RESERVE Flexible and Robust Multi-Network Clustering. In KDD, 2015.
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Problem Formulation

O Phase I: Main Network Clustering

» Symmetric Non-negative Matrix Factorization (SNMF)

» Minimizing

Ju=[G-HHT[ st H>0

> where H ¢ SR?_X“ is the factor matrix of G. k is the number of main clusters.
» Main cluster: the cluster in the main network

» h; indicates to which degree a main node I belongs to the j" main cluster.
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Problem Formulation

U Phase Il: Domain-specific Network Clustering (A Simplified Case)

» Assumption: domain-specific networks in the same main cluster share a common
underlying clustering structure, so we have'\lgunderlying clustering structures.

> A simplified case: all domains have n nodes and t clusters.

> Let the domain cluster assignment vector for node x in A® be ul) (i = 7, ..., o).

» Define k hidden domain cluster assignment vectors Vf(i) € ER]ft (=1, ..., k) for
each domain node x.

Z Z\huuu (i)

i=1 —ll

»“]D :Zg:HA(i) _U(i)(u(i))THZF +azglzk:hinU“) _V(j)HZF
i=1 =1 ]

=1l j=1
] \

| |
Recall hy represents main cluster membership Domain-specific network clustering  Main cluster guided regularization
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Problem Formulation

U Phase Il: Domain-specific Network Clustering (The General Case)

» Different domains can have different set of nodes thus different sizes.

> Define two mapping matrices O™ e {0.3"", D € {0,13""" such that the same
rows of DWU® and Wy represent the same instances.

> Indirect regularization:
Example: if nodes| 1 | and |3 | have similar cluster
assignments in (:D:» , their cluster assignments

in the underlying clustering structure shared by
{D),(Ev(F1} should be similar as well.

. . A (i A (il ~ (ij A~ (i] 2
» Minimize [h; (u(x'i)(u(y'i))T —Vi'i)(vg,'i))T)

CASE WESTERN RESERVE Flexible and Robust Multi-Network Clustering. In KDD, 2015.
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Problem Formulation

U Phase Il: Domain-specific Network Clustering (The General Case)

» Optimization problem

Where
J, = HAm — Uy HZF

e (i) (o i ~ (i) ¢y (i i)y (i i)y (i i)\ /(i i\ 7N\ |I?
J. = Z(u;{) (Ugi))T —Vg(i) (Vgi)))z :H(D(J)U())(D(J)U())T _(O(J)V(J))(O(J)V(J))T HF

X,y=1

o>

» Learning algorithm: an alternating minimization approach. U® and V0 are
alternately solved by multiplicative updating rules with convergence guarantee.

CASE WESTERN RESERVE Flexible and Robust Multi-Network Clustering. In KDD, 2015.
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Experimental Results

O Simulation Study

» Synthetic data generation

An underlying
--~Main Network_ Clustering Structure
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Experimental Results

O Simulation Study

» Accuracy of different methods on synthetic datasets

Dataset Method MhMaln cluster 1 Main cluster 2 Main Cluster 3
Met 1 Met 2 Met 3 Mot 4 MNet & Mot 6 Met T MNet 8 Met O MNet 10 Owerall
SNMF 0.8751 0.8716 | 0.8735 0.87T06 | 0.8732 | 0.8754 0.8722 | 0.8600 | 0.8682 | 0.8746 0.8732
Spectral 0.8587 | 0.8586 | 0.8675 0.8619 | 0.8571 0.8624 0.8626 | 0.8582 | 0.8583 | 0.8622 0.8607
CTSC 0.6249 | 0.6258 | 0.6279 0.6221 | 0.6236 | 0.6196 0.9157 | 09118 | 00106 | 0.9181 0.7400
. PairCRSC 0.9166 | 09174 | 0.9227 0.9186 | 0.9176 | 0.9173 0.9355 | 09335 | 0.09378 | 0.9353 0.9252
vew CentCRSC || 0.9050 | 0.8031 | 0.9090 0.9021 | osooo | 00077 0.9391 0.9408 | 0.9342 0.9378 0.0188
TF - - - - - - - - — - 0.6505
CaC 0.6364 | 0.6337 | 0.6407 0.6385 | 0.6273 | 0.6316 0.7332 | 0.7365 | 0.7251 07210 0.6724
NoNCLus 0.0444 | 0.0403 | 0.9463 [[ 0.0447 [ 0.0435 | 0.0418 [[ 0.0617 | 0.0621 | 0.0643 | 0.0620 || 0.9512 |
SNMF 0.6584 | 0.6687 | 0.65683 0.7123 | 0.7063 | 0.7120 0.6558 | 0.6506 | 0.6620 | 0.6630 0.6TRT
: Spectral 0.5554 | 0.5618 | 0.5556 0.5709 | 05768 | 0.5811 0.5167 | 0.5188 | 0.5241 0.5242 0.5490
Ham CoC 0.7303 | o207 | 07229 o.7o02 | o7o62 | 0.7965 0.7850 | 07840 | 0.7837 | 0.7876 0.7797
NoNCLus 0.7882 | 0.7960 | 0.7914 || 0.86490 | 0.8650 | 0.8654 || 0.8400 | 0.83632 | 0.8367 | 0.8380 [ 0.8388 |

> In view dataset, all A®) have the same size. In dom dataset, different A®) have
different sizes.

» CTSC, PairCRSC, CentCRSC are multi-view graph clustering methods. TF is the
tensor factorization. CGC is a multi-domain graph clustering method.
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Experimental Results

O Scalability Evaluation on Synthetic Dataset
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(a) Varying network size (a) Varying number of networks

Running time evaluation
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Experimental Results

O Functional Module Detection in Tissue-specific Gene Co-Expression Networks

Tissue-specific gene co-expression networks?

Tissue-specific Network #nodes  #edges

Blood 633 2,573
Lymph node 648 2,256
Tonsil 682 2,480
Thymus 786 2,939
Brain 746 3,135
Caudate nucleus 640 2,578
Hypothalamus 641 2,500
Cerebellum 679 2,636
Total 5,455 21,097
*5372 samples for 128 different tissues in four different cell Tissue-tissue sim i|arity network
types, i.e., normal, disease, neoplasm and cell line. We . .
select 8 tissues to construct gene co-expression networks. (the main network in No N)
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Experimental Results

O Functional Module Detection in Tissue-specific Gene Co-Expression Networks

» Evaluation method: standard Gene Set Enrichment Analysis (GSEA).

» The most significant Gene Ontology (GO) term in the biological process category
IS assigned to each identified gene cluster.

» The significance is assessed by Hypergeometric distribution.

» Raw p-values are adjusted for multiple testing problem by False Discovery Rate
(FDR).

CASE WESTERN RESERVE Flexible and Robust Multi-Network Clustering. In KDD, 2015.
UNIVERSITY
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Experimental Results

O Functional Module Detection in Tissue-specific Gene Co-Expression Networks
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Experimental Results

O Functional Module Detection in Tissue-specific Gene Co-Expression Networks
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Experimental Results

O Functional Module Detection in Tissue-specific Gene Co-Expression Networks

Comparison of number of detected significant clusters

Method # significant clusters p-values
SNMF 116 4.64e

Spectral clustering 119 6.66e3

Markov clustering 70 6.45e17
ClusterOne 89 1.43e10
NoNClus’ 121 4.87e2

NoNClus 130 1
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Conclusion

A novel multi-network clustering problem
» Multi-network with multi-underlying clustering structures

U A new clustering framework based on new network model
» NONCIlus on a Network of Networks (NoN)

O Comprehensive experiments

» Results on both synthetic and real datasets demonstrate the
effectiveness of NONClus
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Thank you!

Questions?
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