Inside the Atoms: Ranking on a Network of Networks

Jingchao Ni¹, Hanghang Tong², Wei Fan³, Xiang Zhang¹

¹Department of Electrical Engineering and Computer Science, Case Western Reserve University ²School of Computing, Informatics, Decision Systems Engineering, Arizona State University ³Huawei Noahs Ark Lab

The 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

❑ Network: Data are naturally networks

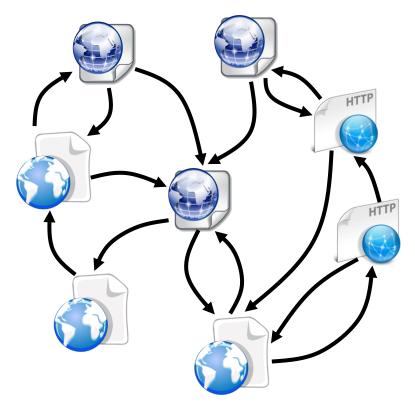
- Webs are linked by hyperlink
- Users are linked by friendship
- Proteins are linked by interactions

Ranking without query

- Rank all nodes based on certain measures, e.g., Pagerank, HITS
- Who are most popular users?

Ranking with query

- Find top-k most "similar" nodes for a query node based on certain measure, e.g., Personalized Pagerank, Simrank
- Who are potential friends of Jon?



Network: Data are naturally networks

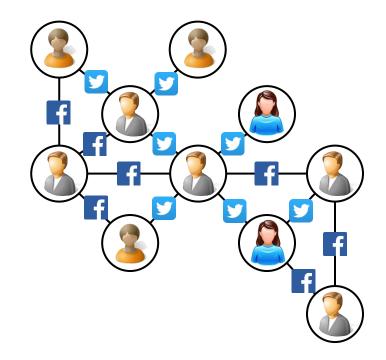
- Webs are linked by hyperlink
- Users are linked by friendship
- Proteins are linked by interactions

Ranking without query

- Rank all nodes based on certain measures, e.g., Pagerank, HITS
- Who are most popular users?

Ranking with query

- Find top-k most "similar" nodes for a query node based on certain measure, e.g., Personalized Pagerank, Simrank
- Who are potential friends of Jon?



❑ Network: Data are naturally networks

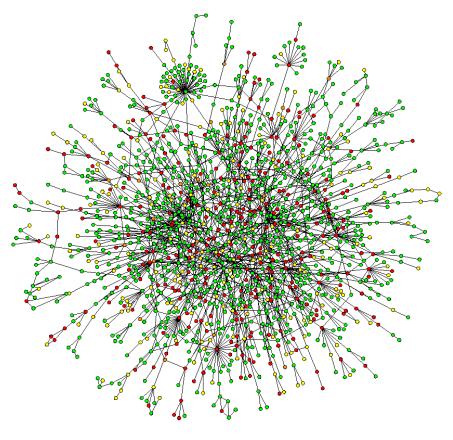
- Webs are linked by hyperlink
- Users are linked by friendship
- Proteins are linked by interactions

Ranking without query

- Rank all nodes based on certain measures, e.g., Pagerank, HITS
- Who are most popular users?

Ranking with query

- Find top-k most "similar" nodes for a query node based on certain measure, e.g., Personalized Pagerank, Simrank
- Who are potential friends of Jon?



D Network: Data are naturally networks

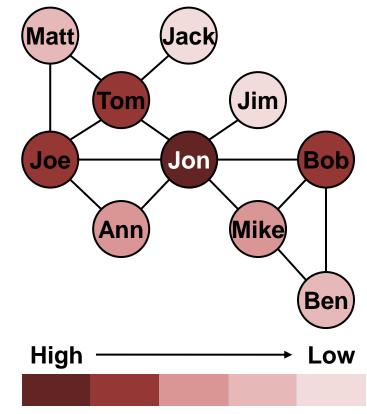
- Webs are linked by hyperlink
- Users are linked by friendship
- Proteins are linked by interactions

Ranking without query

- Rank all nodes based on certain measures, e.g., Pagerank, HITS
- Who are most popular users?

Ranking with query

- Find top-k most "similar" nodes for a query node based on certain measure, e.g., Personalized Pagerank, Simrank
- Who are potential friends of Jon?



Ranking score

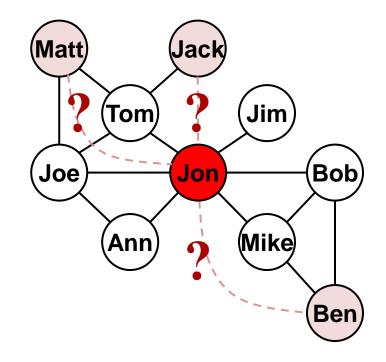
- Network: Data are naturally networks
 - Webs are linked by hyperlink
 - Users are linked by friendship
 - Proteins are linked by interactions

Ranking without query node

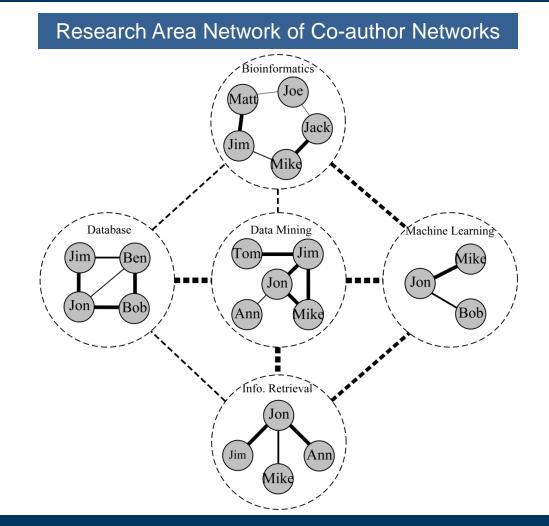
- Rank all nodes based on certain measures, e.g., Pagerank, HITS
- Who are most popular users?

Ranking with query node

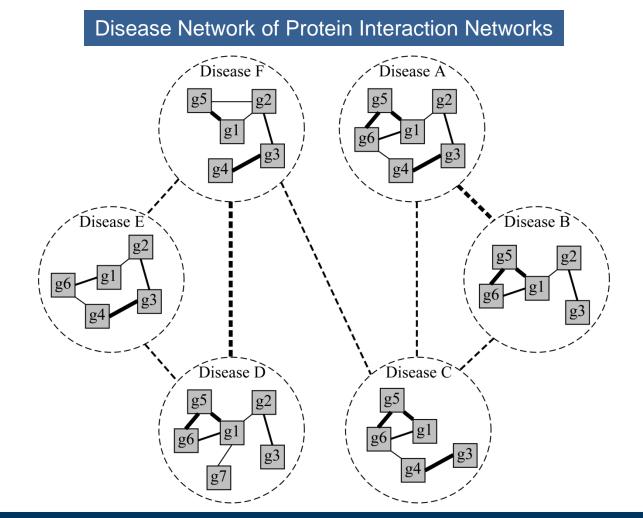
- Find top-k most "similar" nodes for a query node based on certain measure, e.g., Personalized Pagerank, Simrank
- Who are potential friends of Jon?



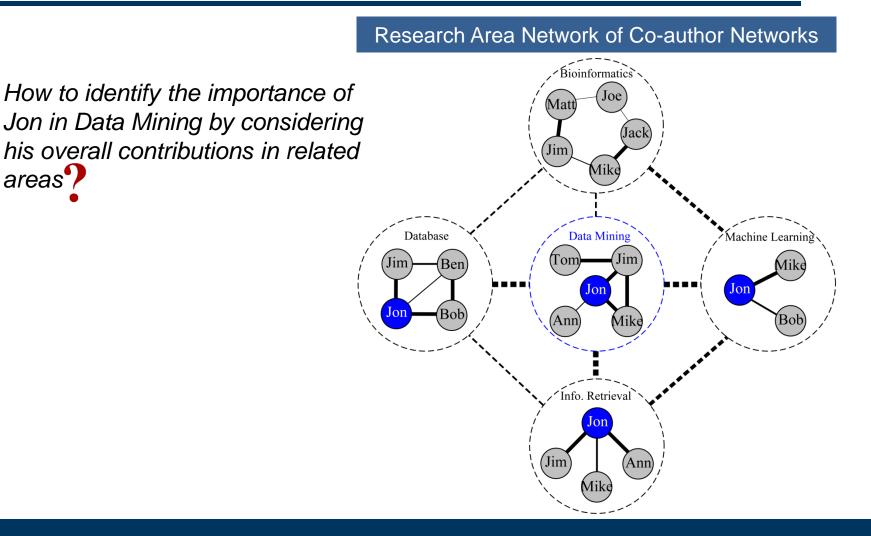
Motivation: Network of Networks (NoN)



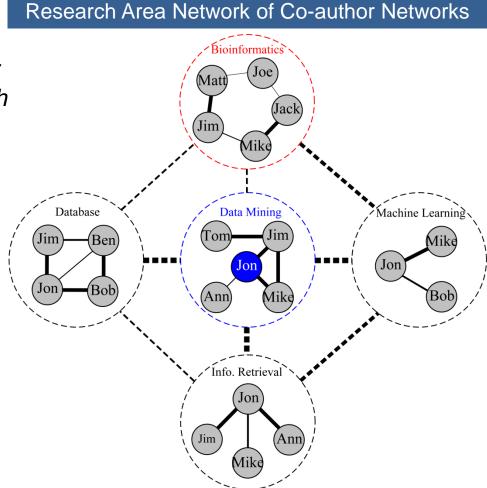
Motivation: Network of Networks (NoN)



Motivation: Ranking in NoN

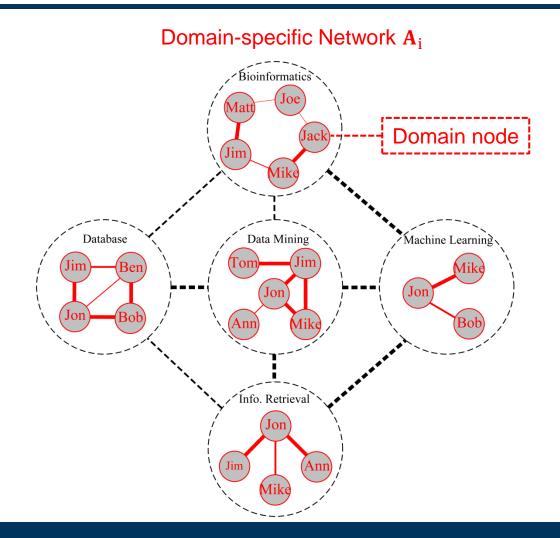


Motivation: Query in NoN

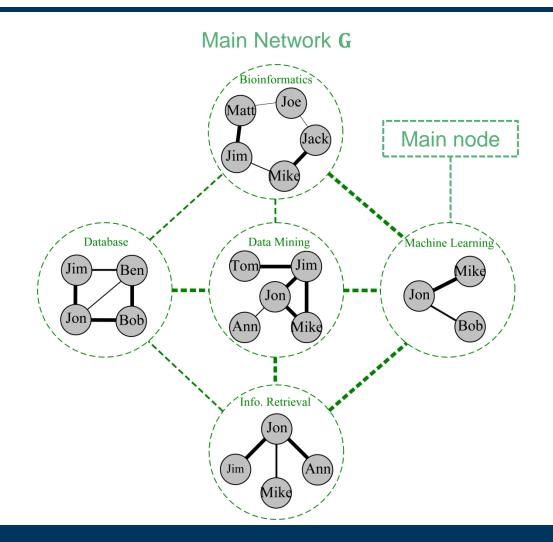


Which Bioinformatics researcher are most likely to collaborate with Data Mining researcher Jon?

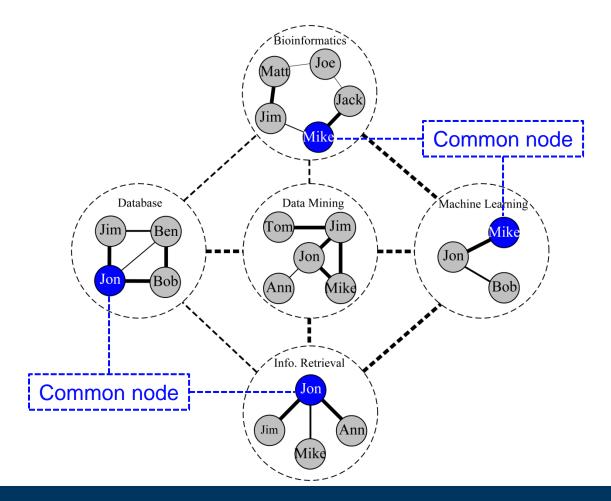
Problem Definitions



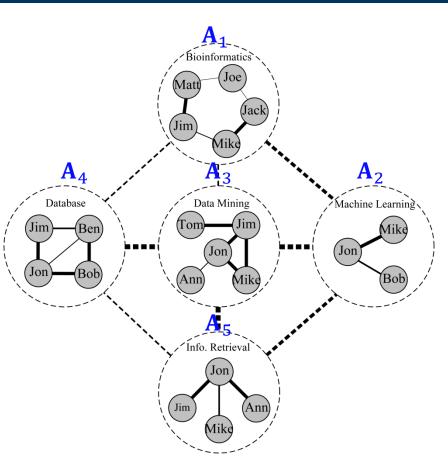
Problem Definitions



Problem Definitions



CrossRank



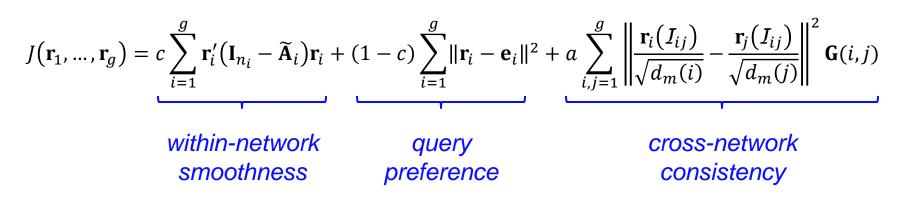
Problem 1: CrossRank

Given: (1) an NoN, and (2) the query vectors \mathbf{e}_i (i = 1, ..., g);

Find: ranking vectors \mathbf{r}_i for the nodes in the domain-specific networks \mathbf{A}_i (i = 1, ..., g).

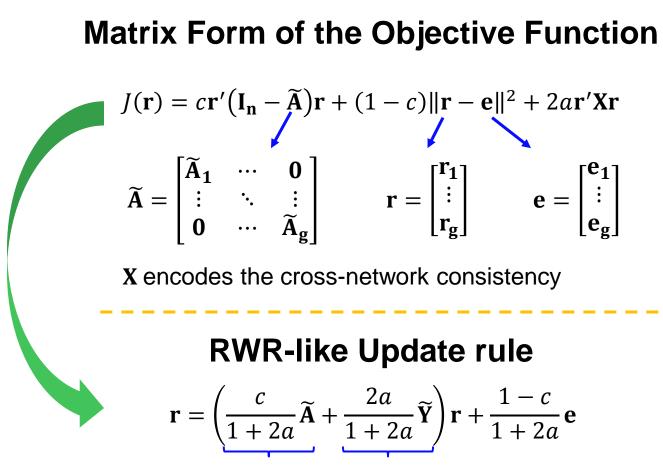
CrossRank

Regularized Optimization Problem



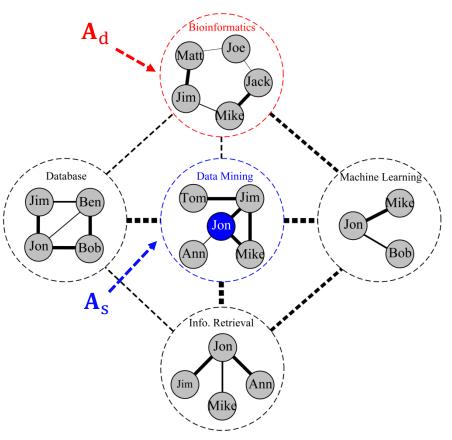
r_i is the ranking vector of the domain-specific network A_i
d_m(i) is the degree of main node i in the main network G
A_i is the symmetric normalized adjacency matrix A_i
I_{ij} is the set of common nodes between A_i and A_j

CrossRank



within-network walk cross-network walk

CrossQuery



Problem 2: CrossQuery

Given: (1) an NoN, (2) a query node from a source domain-specific network A_s , (3) a *target* domain-specific network A_d , and (4) an integer k;

Find: the top-k most relevant nodes from the target domain-specific network A_d w.r.t. the query node

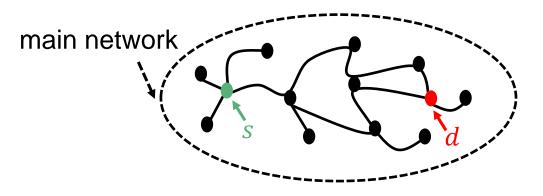
CrossQuery

CrossQuery-Basic

Idea: our RWR-like update rule allows us to apply existing fast random walk with restart algorithm¹ where there is no accuracy loss. The candidate nodes can be restricted to those in the target domain-specific network.

CrossQuery-Fast

Idea: given source and target domain-specific networks A_s and A_d of main nodes s and d respectively, prune less relevant main nodes². Then apply CrossQuery-Basic on the pruned NoN.



1. Y. Fujiwara, et al., Efficient ad-hoc search for personalized pagerank. In SIGMOD, pages 445-456, 2013

2. Y. Koren et al., Measuring and extracting proximity in networks. In KDD, pages 245-255, 2006

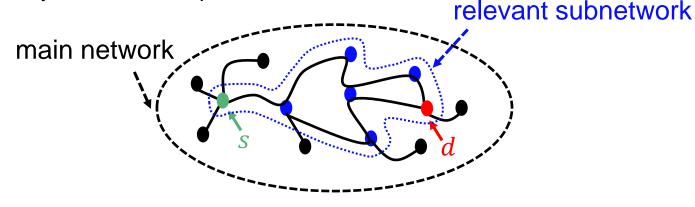
CrossQuery

CrossQuery-Basic

Idea: our RWR-like update rule allows us to apply existing fast random walk with restart algorithm¹ where there is no accuracy loss. The candidate nodes can be restricted to those in the target domain-specific network.

CrossQuery-Fast

Idea: given source and target domain-specific networks A_s and A_d of main nodes s and d respectively, prune less relevant main nodes². Then apply CrossQuery-Basic on the pruned NoN.



1. Y. Fujiwara, et al., Efficient ad-hoc search for personalized pagerank. In SIGMOD, pages 445-456, 2013

2. Y. Koren et al., Measuring and extracting proximity in networks. In KDD, pages 245-255, 2006

CrossRank Effectiveness

Co-Author NoN

Areas in the main network

Area	Conference included
DM	KDD, ICDM, SDM, PKDD, PAKDD
ML	ICML, NIPS, AAAI, IJCAI, UAI, ECML
DB	VLDB, SIGMOD, ICDE, ICDT, EDBT, PODS
IR	SIGIR, WWW, ACL, ECIR, CIKM
BIO	ISMB, RECOMB, ECCB, BIBE, BIBM, WABI

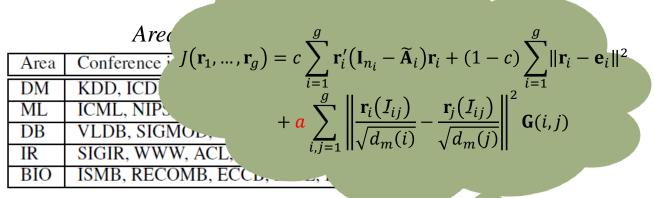
CrossRank Effectiveness

Top ranked authors in the database area when varying a

Rank		a = 0.05	a = 0.1	a = 0.3	a = 0.5
1	Divesh Srivastava	Jiawei Han	Jiawei Han	Jiawei Han	Jiawei Han
2	Jiawei Han	Divesh Srivastava	Divesh Srivastava	Philip S. Yu	Philip S. Yu
3	Philip S. Yu	Philip S. Yu	Philip S. Yu	Divesh Srivastava	Christos Faloutsos
4	Hector Garcia-Molina	Hector Garcia-Molina	Hector Garcia-Molina	Christos Faloutsos	Michael Stonebraker
5	Raghu Ramakrishnan	Raghu Ramakrishnan	Christos Faloutsos	Michael Stonebraker	Divesh Srivastava
6	Gerhard Weikum	Gerhard Weikum	Michael Stonebraker	Hector Garcia-Molina	Hector Garcia-Molina
7	Beng Chin Ooi	Christos Faloutsos	Raghu Ramakrishnan	Michael J. Carey	Michael J. Carey
8	H. V. Jagadish	Michael Stonebraker	Gerhard Weikum	Raghu Ramakrishnan	Gerhard Weikum
9	Michael J. Carey	Michael J. Carey	Michael J. Carey	Gerhard Weikum	Raghu Ramakrishnan
10	Michael Stonebraker	Beng Chin Ooi	Beng Chin Ooi	Elke A. Rundensteiner	Elke A. Rundensteiner

CrossRank Effectiveness

Co-Author NoN



CrossRank Effectiveness

Top ranked authors in the database area when varying a

Rank		a = 0.05	a = 0.1	a = 0.3	a = 0.5
1	Divesh Srivastava	Jiawei Han	Jiawei Han	Jiawei Han	Jiawei Han
2	Jiawei Han	Divesh Srivastava	Divesh Srivastava	Philip S. Yu	Philip S. Yu
3	Philip S. Yu	Philip S. Yu	Philip S. Yu	Divesh Srivastava	Christos Faloutsos
4	Hector Garcia-Molina	Hector Garcia-Molina	Hector Garcia-Molina	Christos Faloutsos	Michael Stonebraker
5	Raghu Ramakrishnan	Raghu Ramakrishnan	Christos Faloutsos	Michael Stonebraker	Divesh Srivastava
6	Gerhard Weikum	Gerhard Weikum	Michael Stonebraker	Hector Garcia-Molina	Hector Garcia-Molina
7	Beng Chin Ooi	Christos Faloutsos	Raghu Ramakrishnan	Michael J. Carey	Michael J. Carey
8	H. V. Jagadish	Michael Stonebraker	Gerhard Weikum	Raghu Ramakrishnan	Gerhard Weikum
9	Michael J. Carey	Michael J. Carey	Michael J. Carey	Gerhard Weikum	Raghu Ramakrishnan
10	Michael Stonebraker	Beng Chin Ooi	Beng Chin Ooi	Elke A. Rundensteiner	Elke A. Rundensteiner

CrossQuery Effectiveness

CrossQuery Effectiveness

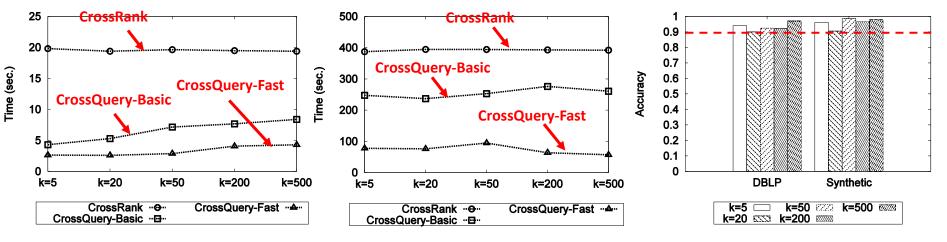
Cross-area Co-authorship prediction results

• Which DB authors are most likely to collaborate with a DM author?

#Papers	Hops	#Pairs	Methods	AUC	Accuracy
			PC	0.7196	0.4444
			Katz	0.7439	0.5556
≥ 3	[3,4]	45	PropFlow	0.7558	0.6222
			PathSim	0.5636	0.2444
			PageRank	0.7417	0.5333
			CrossQuery	0.7685	0.6444
			PC	0.6009	0.3000
			Katz	0.6243	0.3714
≥ 3	[3,6]	70	PropFlow	0.6268	0.4429
			PathSim	0.5278	0.2143
			PageRank	0.6378	0.3714
			CrossQuery	0.6632	0.4571
			PC	0.6521	0.2609
			Katz	0.6717	0.3478
≥ 5	[3,4]	23	PropFlow	0.6850	0.3478
			PathSim	0.4279	0.1304
			PageRank	0.6743	0.3478
			CrossQuery	0.7099	0.3478
			PC	0.5692	0.2105
			Katz	0.5786	0.2368
≥ 5	[3,6]	38	PropFlow	0.5950	0.2895
			PathSim	0.4362	0.1053
			PageRank	0.5880	0.2368
			CrossQuery	0.6308	0.2895

CrossQuery Efficiency

CrossQuery Efficiency



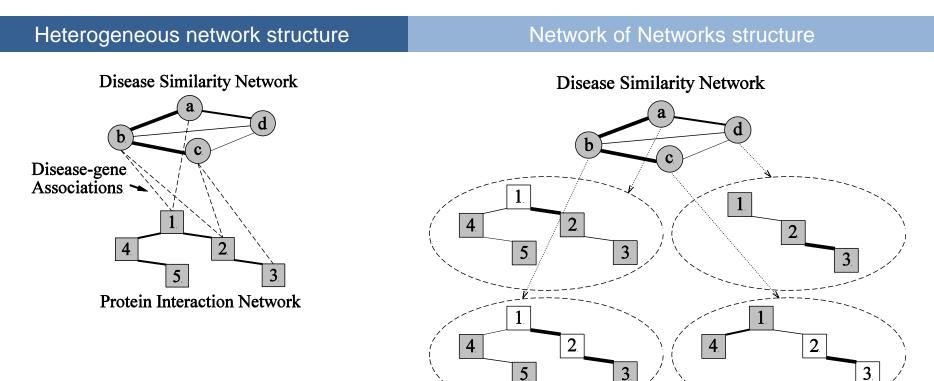
Query time on DBLP NoN

Query time on synthetic NoN

Accuracy of CrossQuery-Fast

Candidate Gene Prediction

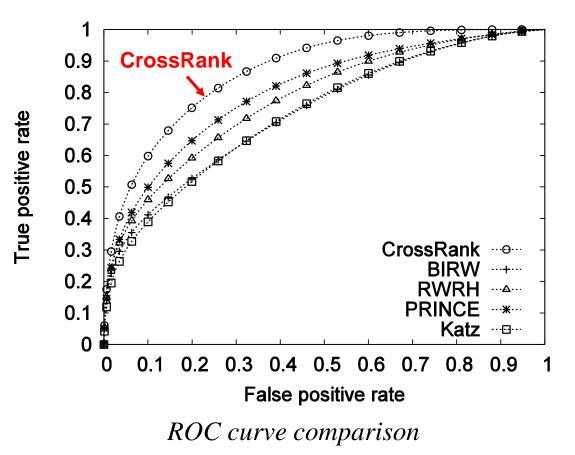
Protein Interaction NoN



Tissue-specific Protein Interaction Networks

Candidate Gene Prediction

Protein Interaction NoN



Candidate Gene Prediction

Protein Interaction NoN

Ranking results comparison

Method	<i>p</i> -value
CrossRank vs. BIRW	1.82×10^{-11}
CrossRank vs. RWRH	2.04×10^{-11}
CrossRank vs. PRINCE	1.08×10^{-10}
CrossRank vs. Katz	2.32×10^{-12}

New Data Model: Network of Networks (NoN)

New Ranking Algorithm: CrossRank

Efficient Query Algorithm: CrossQuery

Thank you!

Questions?

