

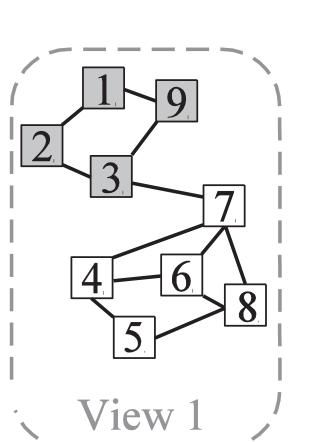
Flexible and Robust Multi-Network Clustering

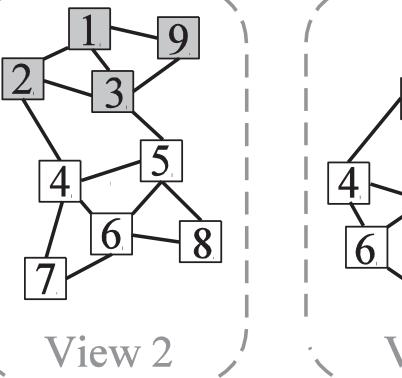
Jingchao Ni¹, Hanghang Tong², Wei Fan³, and Xiang Zhang¹ ¹Department of Electrical Engineering and Computer Science, Case Western Reserve University ²School of Computing, Informatics, Decision Systems Engineering, Arizona State University ³Baidu Research Big Data Lab

Multi-Network Clustering

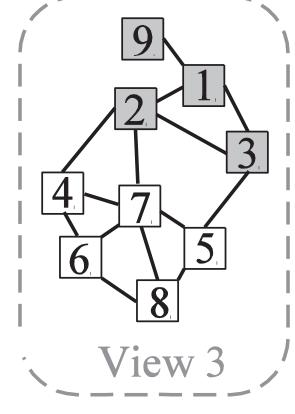
Multi-view Networks

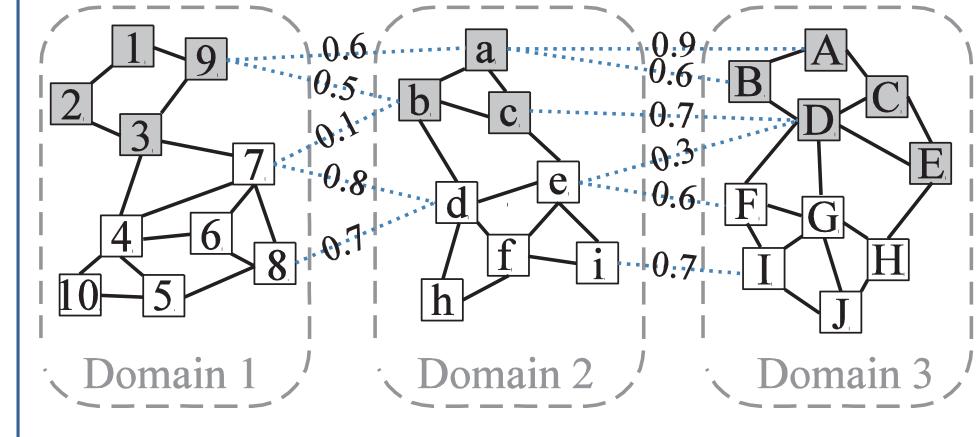
Multi-domain Networks





CASE WESTERN RESERVE





Properties (of most works)

- All views have the same size
- One-to-one mapping across views
- Full mapping between nodes across views

Properties

- Domains can have different sizes
- Many-to-many mapping across domains
 - Partial mapping across domains
- The mappings have weights

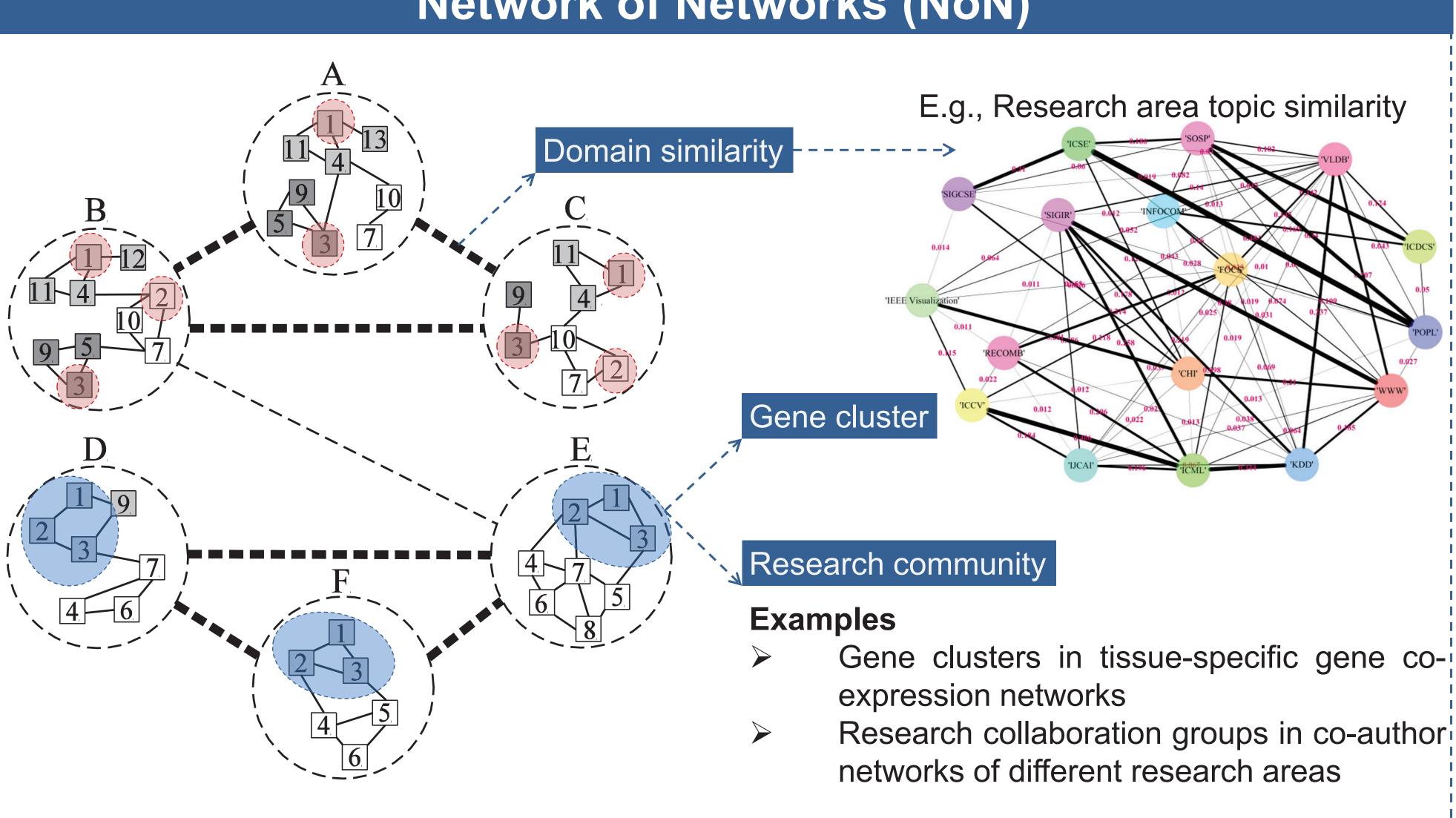
Key assumptions

- > Different views/domains share the same underlying clustering structure
- > Methods are designed to identify consistent clustering structure across all views/domains

This basic assumption may not hold in some emerging applications.

Motivation

Network of Networks (NoN)



We can not assume networks {A, B, C, D, E, F} share a common underlying clustering structure.

> This calls for a method simultaneously clustering multiple networks with multiple underlying clustering structures.

Definitions

- > We call the domain similarity network as the main network (the dashed line network).
- > We call the network in each domain as the **domain-specific network** (the solid line networks).
- \succ The adjacency matrix of the main network is G. The adjacency matrices of the domain-specific networks are $\{A^{(1)}, ..., A^{(g)}\}.$

NoNClus

Phase I: Main Network Clustering

minimize
$$J_M = \|\mathbf{G} - \mathbf{H}\mathbf{H}^T\|_F^2$$
 s.t. $\mathbf{H} \ge 0$

Phase II: Domain-specific Network Clustering

Individual domain-specific network clustering

minimize
$$J_A = \|\mathbf{A}^{(i)} - \mathbf{U}^{(i)}(\mathbf{U}^{(i)})^T\|_F^2$$
 s.t. $\mathbf{U}^{(i)} \ge 0$

Main cluster guided regularization

$$J_R = h_{ij} \| (\mathbf{D}^{(ij)}\mathbf{U}^{(i)})(\mathbf{D}^{(ij)}\mathbf{U}^{(i)})^T - (\mathbf{O}^{(ij)}\mathbf{V}^{(j)})(\mathbf{O}^{(ij)}\mathbf{V}^{(j)})^T \|_{H}^2$$
Inner product similarity Inner product similarity

Main cluster Clustering Inconsistency

D^(ij), O^(ij) are Mapping matrices such that the same rows of $\mathbf{D}^{(ij)}\mathbf{U}^{(i)}$ and $\mathbf{O}^{(ij)}\mathbf{V}^{(j)}$ represent the same instances where we allow different domains to have different sizes.

The unified objective function

$$\min_{\substack{\mathbf{U}^{(i)} \geq 0, (i=1,\dots,g) \\ \mathbf{V}^{(j)} \geq 0, (j=1,\dots,k)}} J_D = \sum_{i=1}^g J_A + a \sum_{i=1}^g \sum_{j=1}^k J_B$$

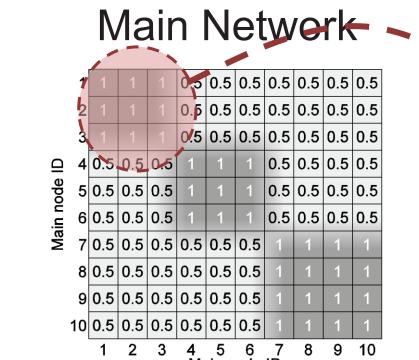
This joint optimization problem can be solved by an alternating minimization approach where U and $V^{(j)}$ are alternately solved by multiplicative updating rules with convergence guarantee.

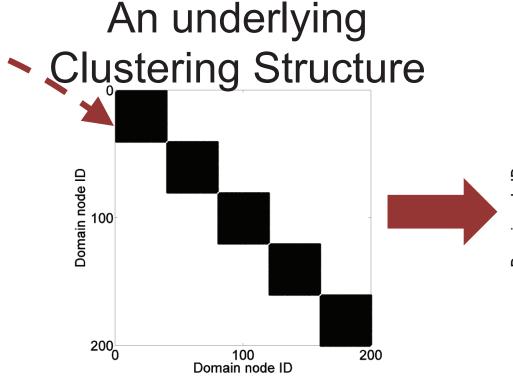
Experiments

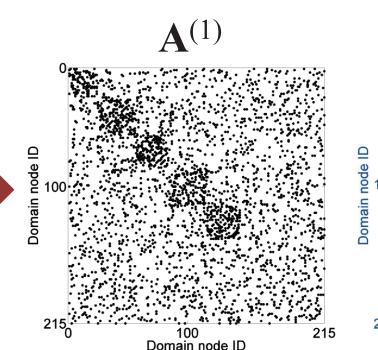
Effectiveness Evaluation

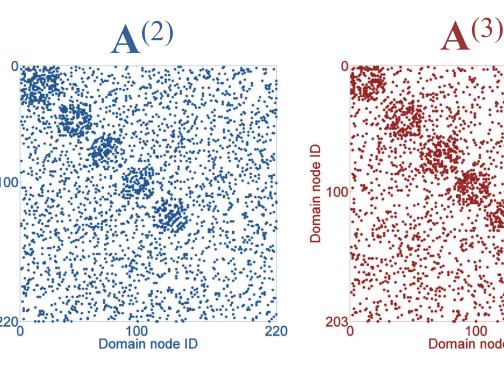
Simulation study

membership





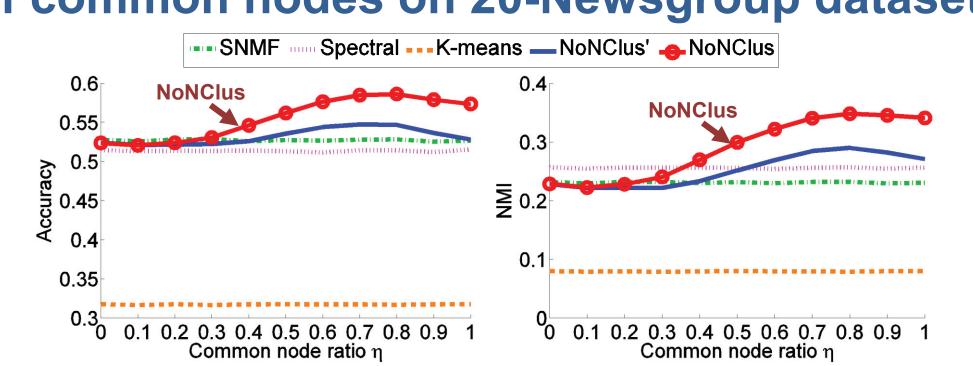


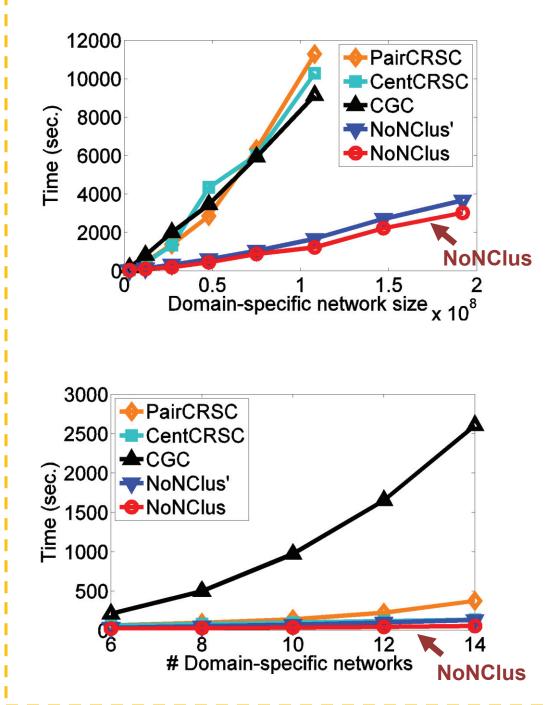


Accuracy of different methods on synthetic datasets

Dataset	Method	Main cluster 1			Main cluster 2			Main Cluster 3				
		Net 1	Net 2	Net 3	Net 4	Net 5	Net 6	Net 7	Net 8	Net 9	Net 10	Overall
view	SNMF	0.8751	0.8716	0.8735	0.8796	0.8732	0.8754	0.8722	0.8690	0.8682	0.8746	0.8732
	Spectral	0.8587	0.8586	0.8675	0.8619	0.8571	0.8624	0.8626	0.8582	0.8583	0.8622	0.8607
	CTSC	0.6249	0.6258	0.6279	0.6221	0.6236	0.6196	0.9157	0.9118	0.9106	0.9181	0.7400
	PairCRSC	0.9166	0.9174	0.9227	0.9186	0.9176	0.9173	0.9355	0.9335	0.9378	0.9353	0.9252
	CentCRSC	0.9050	0.9031	0.9090	0.9021	0.9090	0.9077	0.9391	0.9408	0.9342	0.9378	0.9188
	TF		_	_	_	_	_	_	_	_	_	0.6505
	CGC	0.6364	0.6337	0.6407	0.6385	0.6273	0.6316	0.7332	0.7365	0.7251	0.7210	0.6724
	NoNClus	0.9444	0.9403	0.9463	0.9447	0.9435	0.9418	0.9617	0.9621	0.9643	0.9629	0.9512
dom	SNMF	0.6584	0.6687	0.6583	0.7123	0.7063	0.7129	0.6558	0.6596	0.6620	0.6630	0.6787
	Spectral	0.5554	0.5618	0.5556	0.5799	0.5768	0.5811	0.5167	0.5188	0.5241	0.5242	0.5490
	CGC	0.7303	0.7297	0.7229	0.7992	0.7962	0.7965	0.7859	0.7840	0.7837	0.7876	0.7797
	NoNCLUS	0.7882	0.7960	0.7014	0.8649	0.8650	0.8654	0.8409	0.8363	0.8367	0.8280	0.8288

Gene clusters in tissue-specific gene co- Effects of common nodes on 20-Newsgroup dataset

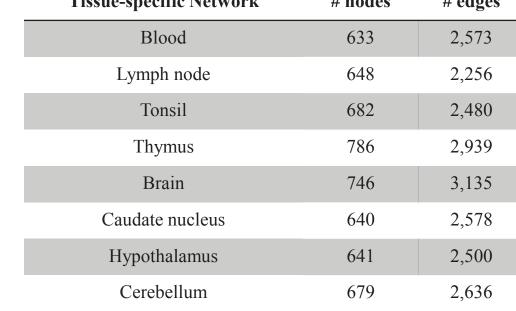




Scalability

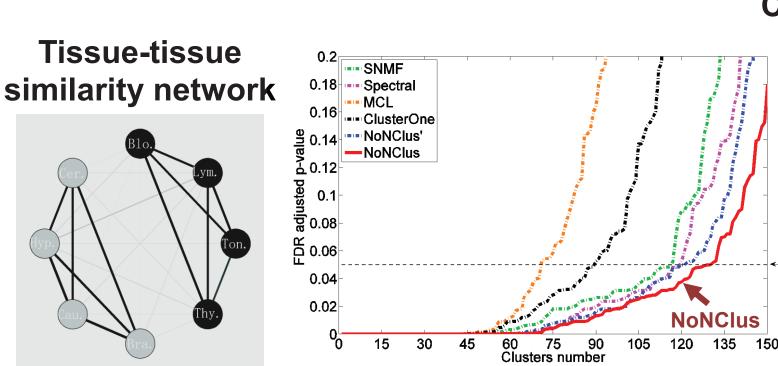
A Case Study of Tissue-specific Gene Co-expression Networks

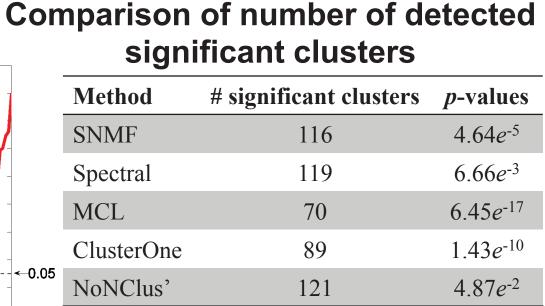
Tissue-specific gene co-expression networks Tissue-specific Network



5,455

Total





130

NoNClus