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Network of Networks Solution to CrossRank

RWR-like update rule

Motivation: Network is an important and popular data model since real-world data are naturally
networks, e.g., web network, social network, biological network, etc. However, networks are not
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Research area network of co-author networks X: A normalized Laplacian matrix of cross

network links between common nodes.
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CrossQuery-Basic: RWR-like update rule allows us

Examples of NoN. The main network is represented by dashed nodes and edges. The domain- {5 gpply existing scalable algorithms for RWR.

specific networks are represnetd by solid nodes and edges.

CrossQuery-Fast: 1. Extract relevant subnetwork

Definition. Network of Networks (NoN). Given a g X g main network G, a set of g domain-specific
w.r.t. main nodes representing source and target pain network

networks A ={A,,...,A,} and a one-to-one mapping function 8, which maps each node in the main e

g . _ _ _ domain-specific networks from the main network; 2.
network G to a domain-specific network, a Network of Networks (NoN) is defined as the triplet Prune NoN: 3. Apply CrossQuery-Basic on the pruned \|
R=<G,A 60 >. Nodes in the main network are referred to as main nodes, nodes in the domain- NoON L
specific networks are called domain nodes. Each main node represents a domain-specific network S

through the mapping function 6. In addition, we represent the nodes in each domain-specific network
as V; (i = 1,...,9). We define I; ; as the common nodes between A; and A;, i.e., I; ; = V;N'V;.
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