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Detecting system anomalies is an important problem in many fields such as security, fault management, and
industrial optimization. Recently, invariant network has shown to be powerful in characterizing complex
system behaviours. In the invariant network, a node represents a system component and an edge indicates
a stable, significant interaction between two components. Structures and evolutions of the invariance net-
work, in particular the vanishing correlations, can shed important light on locating causal anomalies and
performing diagnosis. However, existing approaches to detect causal anomalies with the invariant network
often use the percentage of vanishing correlations to rank possible casual components, which have several
limitations: (1) fault propagation in the network is ignored, (2) the root casual anomalies may not always
be the nodes with a high percentage of vanishing correlations, (3) temporal patterns of vanishing correla-
tions are not exploited for robust detection, and (4) prior knowledge on anomalous nodes are not exploited
for (semi-)supervised detection. To address these limitations, in this article we propose a network diffusion
based framework to identify significant causal anomalies and rank them. Our approach can effectively model
fault propagation over the entire invariant network and can perform joint inference on both the structural
and the time-evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that
are truly responsible for the vanishing correlations and can compensate for unstructured measurement noise
in the system. Moreover, when the prior knowledge on the anomalous status of some nodes are available at
certain time points, our approach is able to leverage them to further enhance the anomaly inference accuracy.
When the prior knowledge is noisy, our approach also automatically learns reliable information and reduces
impacts from noises. By performing extensive experiments on synthetic datasets, bank information system
datasets, and coal plant cyber-physical system datasets, we demonstrate the effectiveness of our approach.
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1. INTRODUCTION

With the rapid advances in networking, computers, and hardware, we are facing an
explosive growth of complexity in networked applications and information services.
These large-scale, often distributed, information systems usually consist of a great
variety of components that work together in a highly complex and coordinated manner.
One example is the Cyber-Physical System (CPS), which is typically equipped with
a large number of networked sensors that keep recording the running status of the
local components; another example is the large-scale Information Systems such as the
cloud computing facilities in Google, Yahoo!, and Amazon, whose composition includes
thousands of components that vary from operating systems to application software to
servers to storage to networking devices, and so on.

A central task in running these large-scale distributed systems is to automatically
monitor the system status, detect anomalies, and diagnose system fault to guarantee
stable and high-quality services or outputs. Significant research efforts have been
devoted to this topic in the literature. For instance, Gertler et al. [8] proposed to detect
anomalies by examining monitoring data of individual component with a thresholding
scheme. However, it can be quite difficult to learn a universal and reliable threshold in
practice, due to the dynamic and complex nature of information systems. More effective
and recent approaches typically start with building system profiles and then detect
anomalies via analyzing patterns in these profiles [5, 16]. The system profile is usually
extracted from historical time-series data collected by monitoring different system
components, such as the flow intensity of software log files, system audit events, and
network traffic statistics, and sometimes sensory measurements in physical systems.

The invariant model is a successful example [16, 17] of large-scale system man-
agement. It focuses on discovering stable, significant dependencies between pairs of
system components that are monitored through time-series recordings to profile the
system status and perform subsequent reasoning. A strong dependency between a pair
of components is called an invariant (correlation) relationship. By combining the in-
variants learned from all monitoring components, a global system dependency profile
can be obtained. The significant practical value of such an invariant profile is that it
provides important clues on abnormal system behaviors, and in particular the source
of anomalies, by checking whether existing invariants are broken. Figure 1 illustrates
one example of the invariant network and two snapshots of broken invariants at time
t1 and t2, respectively. Each node represents the observation from a monitoring com-
ponent. The green line signifies an invariant link between two components, and a red
line denotes broken invariant (i.e., vanishing correlation). The network including all
the broken invariants at given time point is referred to as the broken network.

Although the broken invariants provide valuable information of the system status,
locating true, causal anomalies can still be a challenging task for the following rea-
sons. First, system faults are seldom isolated. Instead, starting from the root location/
component, anomalous behavior will propagate to neighboring components [16], and
different types of system faults can trigger diverse propagation patterns. Second, mon-
itoring data often contain a lot of noises due to the fluctuation of complex operation
environments.

Recently, several ranking algorithms were developed to diagnose the system failure
based on the percentage of broken invariant edges associated with the nodes, such as
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Fig. 1. Invariant network and vanishing correlations (red edges).

the egonet-based method proposed by Ge et al. [7], and the loopy belief propagation–
(LBP) based method proposed by Tao et al. [26]. Despite the success in practical ap-
plications, existing methods still have certain limitations. First, they do not take into
account the global structure of the invariant network or how the root anomaly/fault
propagates in such a network. Second, the ranking strategies rely heavily on the per-
centage of broken edges connected to a node. For example, the mRank algorithm [7]
calculated the anomaly score of a given node using the ratio of broken edges within
the egonet1 of the node. The LBP-based method [26] used the ratio of broken edges as
the prior probability of abnormal state for each node. We argue that the percentage of
broken edges may not serve as good evidence of the causal anomaly. This is because,
although one broken edge can indicate that one (or both) of the related nodes is abnor-
mal, lack of a broken edge does not necessary indicate that related nodes are problem
free. Instead, it is possible that the correlation is still there when two nodes become
abnormal simultaneously [16]. Therefore, the percentage of broken edges could give
false evidence. For example, in Figure 1, the causal anomaly is node ©i . The percentage
of broken edges for node ©i is 2/3, which is smaller than that of node ©h (which is equal
to 1). Since clear evidence of fault propagation on node ©i exists, an ideal algorithm
should rank ©i higher than ©h . Third, existing methods usually consider a static broken
network instead of multiple broken networks at successive time points together. We
believe that jointly analyzing temporal broken networks can help to resolve ambigu-
ity and achieve a denoising effect. This is because the root casual anomalies usually
remain unchanged within a short time period, even though the fault may keep proro-
gating in the invariant network. As an example shown in Figure 1, it would be easier to
detect the causal anomaly if we jointly consider the broken networks at two successive
time points together.

Furthermore, in some applications, system experts may have prior knowledge on
the anomalous status of some components (i.e., nodes) at certain time points, such as
a numeric value indicating the bias of the monitoring data of a component from its
predicted normal value [6]. Thus it is highly desirable to incorporate them to guide
the causal anomaly inferences. However, to our best knowledge, none of these existing
approaches can handle such information.

To address the limitations of existing methods, we propose several network diffusion
based algorithms for ranking causal anomalies. Our contributions are summarized as
follows.

(1) We employ the network diffusion process to model propagation of causal anoma-
lies and use propagated anomaly scores to reconstruct the vanishing correlations.

1An egonet is the induced 1-step subgraph for each node.
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By minimizing the reconstruction error, the proposed methods simultaneously
consider the whole invariant network structure and the potential fault propagation.
We also provide rigid theoretical analysis on the properties of our methods.

(2) We further develop efficient algorithms that reduce the time complexity from O(n3)
to O(n2), where n is the number of nodes in the invariant network. This makes it
feasible to quickly locate root cause anomalies in large-scale systems.

(3) We employ effective normalization strategy on the ranking scores, which can reduce
the influence of extreme values or outliers without having to explicitly remove them
from the data.

(4) We develop a smoothing algorithm that enables users to jointly consider dynamic
and time-evolving broken network and thus obtain better ranking results.

(5) We extend our algorithms to semi-supervised settings to leverage the prior knowl-
edge on the anomalous degrees of nodes at certain time points. The prior knowledge
are allowed to partially cover the nodes in the invariant network, as practically sug-
gested by the limitation of such information.

(6) We also improve our semi-supervised algorithms to allow automatic identification
of noisy prior knowledge. By assigning small weights to nodes with false anomalous
degrees, our algorithms can reduce the negative impacts of prior knowledge and
obtain robust performance gain.

(7) We evaluate the proposed methods on both synthetic datasets and two real-life
datasets, including the bank information system and the coal plant cyber-physical
system datasets. The experimental results demonstrate the effectiveness of the
proposed methods.

2. BACKGROUND AND PROBLEM DEFINITION

In this section, we first introduce the technique of the invariant model [16] and then
define our problem.

2.1. System Invariant and Vanishing Correlations

The invariant model is used to uncover significant pairwise relations among massive
set of time series. It is based on the AutoRegressive eXogenous (ARX) model [21] with
time delay. Let x(t) and y(t) be a pair of time series under consideration, where t is the
time index, and let n and m be the degrees of the ARX model, with a delay factor k.
Let ŷ(t; θ) be the prediction of y(t) using the ARX model parametarized by θ , which can
then be written as

ŷ(t; θ) = a1y(t − 1) + · · · + any(t − n), (1)
+ b0x(t − k) + · · · + bmx(t − k − m) + d

= ϕ(t)�θ , (2)

where θ = [a1, . . . , an, b0, . . . , bm, d]� ∈ R
n+m+2, ϕ(t) = [y(t − 1), . . . , y(t − n), x(t −

k), . . . , x(t − k − m), 1]� ∈ R
n+m+2. For a given setting of (n, m, k), the parameter θ

can be estimated with observed time points t = 1, . . . , N in the training data, via
least-squares fitting. In real-world applications such as anomaly detection in physical
systems, 0 ≤ n, m, k ≤ 2 is a popular choice [6, 16]. We can define the “goodness of fit”
(or fitness score) of an ARX model as

F(θ) = 1 −
√√√√∑N

t=1

∣∣y(t) − ŷ(t; θ)
∣∣2∑N

t=1

∣∣y(t) − ȳ
∣∣2 , (3)

where ȳ is the mean of the time series y(t). A higher value of F(θ ) indicates a better
fitting of the model. An invariant (correlation) is declared on a pair of time series x and
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Table I. Summary of Notations

Symbol Definition
n the number of nodes in the invariant network

c, λ, τ the parameters 0 < c < 1, τ > 0, λ > 0
σ (·) the softmax function
Gl the invariant network
Gb the broken network for Gl

A (Ã) ∈ R
n×n the (normalized) adjacency matrix of Gl

P (P̃) ∈ R
n×n the (normalized) adjacency matrix of Gb

M ∈ R
n×n the logical matrix of Gl

d(i) the degree of the ith node in network Gl

D ∈ R
n×n the degree matrix: D = diag(d(i), . . . , d(n))

r ∈ R
n×1 the prorogated anomaly score vector

e ∈ R
n×1 the ranking vector of causal anomalies

RCA the basic ranking causal anomalies algorithm
R-RCA the relaxed RCA algorithm

RCA-SOFT the RCA with softmax normalization
R-RCA-SOFT the relaxed RCA with softmax normalization

T-RCA the RCA with temporal smoothing
T-R-RCA the R-RCA with temporal smoothing

T-RCA-SOFT the RCA-SOFT with temporal smoothing
T-R-RCA-SOFT the R-RCA-SOFT with temporal smoothing

RCA-SEMI the RCA in semi-supervised setting
W-RCA-SEMI the semi-supervised RCA with weight learning

y if the fitness score of the ARX model is larger than a pre-defined threshold. A network
including all the invariant links is referred to as the invariant network. Construction
of the invariant network is referred to as the model training. The model θ will then be
applied on the time series x and y in the testing phase to track vanishing correlations.

To track vanishing correlations, we can use the techniques developed in References
[6, 18]. At each time point, we compute the (normalized) residual R(t) between the
measurement y(t) and its estimate ŷ(t; θ) by

R(t) =
∣∣y(t) − ŷ(t; θ)

∣∣
εmax

, (4)

where εmax is the maximum training error εmax = max1≤t≤N |y(t)− ŷ(t; θ)|. If the residual
exceeds a prefixed threshold, then we declare the invariant as “broken,” that is, the
correlation between the two time series vanishes. The network including all the broken
edges at given time point and all nodes in the invariant network is referred to as the
broken network.

2.2. Problem Definition

Let Gl be the invariant network with n nodes. Let Gb be the broken network for Gl.
We use two symmetric matrices A ∈ R

n×n, P ∈ R
n×n to denote the adjacency matrix

of network Gl and Gb, respectively. These two matrices can be obtained as discussed
in Section 2.1. The two matrices can be binary or continuous. For binary case of A, 1
is used to denote that the correlation exists between two time series, and 0 denotes
the lack of correlation; while for P, 1 is used to denote that the correlation is broken
(vanishing), and 0 otherwise. For the continuous case, the fitness score F(θ ) (3) and the
residual R(t) (4) can be used to fill the two matrices, respectively.

Our main goal is to detect the abnormal nodes in Gl that are most responsible for
causing the broken edges in Gb. In this sense, we call such nodes “causal anomalies.”
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Accurate detection of causal anomalous nodes will be extremely useful for examination,
debugging, and repair of system failures.

3. RANKING CAUSAL ANOMALIES

In this section, we present the algorithm of Ranking Causal Anomalies (RCA),
which takes into account both the fault propagation and fitting of broken invariants
simultaneously.

3.1. Fault Propagation

We consider a very practical scenario of fault propagation, namely that anomalous
system status can always be traced back to a set of root cause anomaly nodes, or
causal anomalies, as initial seeds. As the time passes, these root cause anomalies will
then propagate along the invariant network, most probably towards their neighbors
via paths identified by the invariant links in Gl. To explicitly model this spreading
process on the network, we have employed the label propagation technique [19, 28,
31]. Suppose that the (unknown) root cause anomalies are denoted by the indicator
vector e, whose entries ei ’s (1 ≤ i ≤ n) indicate whether the ith node is the casual
anomaly (ei = 1) or not (ei = 0). At the end of propagation, the system status is
represented by the anomaly score vector r, whose entries tell us how severe each node
of the network has been impaired. The propagation from e to r can be modeled by the
following optimization problem:

min
r≥0

c
n∑

i, j=1

Ai j

∥∥∥∥∥ 1√
Dii

ri − 1√
D j j

r j

∥∥∥∥∥
2

+ (1 − c)
n∑

i=1

||ri − ei||2,

where D ∈ R
n×n is the degree matrix of A, c ∈ (0, 1) is the regularization parameter,

r is the anomaly score vector after the propagation of the initial faults in e. We can
re-write the above problem as

min
r≥0

cr�(In − Ã)r + (1 − c)||r − e||2F, (5)

where In is the identity matrix and Ã = D−1/2AD−1/2 is the degree-normalized version
of A. Similarly, we will use P̃ as the degree-normalized P in the sequel. The first
term in Equation (5) is the smoothness constraint [31], meaning that a good ranking
function should assign similar values to nearby nodes in the network. The second term
is the fitting constraint, which means that the final status should be close to the initial
configuration. The tradeoff between these two competing constraints is controlled by a
positive parameter c: A small c encourages a sufficient propagation, and a big c actually
suppresses the propagation. The optimal solution of problem (5) is [31]

r = (1 − c)(In − cÃ)−1e, (6)

which establishes an explicit, closed-form solution between the initial configuration e
and the final status r through propagation.

To encode the information of the broken network, we propose to use r to reconstruct
the broken network Gb. The intuition is illustrated in Figure 2. If there exists a broken
link in Gb, for example, P̃i j is large, then ideally at least one of the nodes i and j should
be abnormal or, equivalently, either ri or r j should be large. Thus, we can use the
product of ri and r j to reconstruct the value of P̃i j . In Section 5, we will further discuss
how to normalize them to avoid extreme values. Then, the loss of reconstructing the
broken link P̃i j can be calculated by (ri ·r j −P̃i j)2. The reconstruction error of the whole
broken network is then ||(rr�) ◦ M − P̃||2F . Here, ◦ is the element-wise operator, and
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Fig. 2. Reconstruction of the broken invariant network using anomaly score vector r.

M is the logical matrix of the invariant network Gl (1 with edge, 0 without edge). Let
B = (1 − c)(In − cÃ)−1, by substituting r we obtain the following objective function:

min
ei∈{0,1},1≤i≤n

||(Bee�B�) ◦ M − P̃||2F . (7)

Considering that the integer programming in problem (7) is NP-hard, we relax it by
using the �1 penalty on e with parameter τ to control the number of non-zero entries
in e [27]. Then we reach the following objective function:

min
e≥0

||(Bee�B�) ◦ M − P̃||2F + τ ||e||1 (8)

3.2. Learning Algorithm

In this section, we present an iterative multiplicative updating algorithm to optimize
the objective function in Equation (8). The objective function is invariant under these
updates if and only if e are at a stationary point [20]. The solution is presented in the
following theorem, which is derived from the Karush-Kuhn-Tucker (KKT) complemen-
tarity condition [3]. Detailed theoretical analysis of the optimization procedure will be
presented in the next section.

THEOREM 1. Updating e according to Equation (9) will monotonically decrease the
objective function in Equation (8) until convergence,

e ← e ◦
{

4B�(P̃ ◦ M)�Be
4B�[M ◦ (Bee�B�)]Be + τ1n

} 1
4

, (9)

where ◦, [·]
[·] , and (·) 1

4 are element-wise operators.

Based on Theorem 1, we develop the iterative multiplicative updating algorithm for
optimization and summarize it in Algorithm 1. We refer to this ranking algorithm as
RCA.

3.3. Theoretical Analysis

3.3.1. Derivation. We derive the solution to problem (9) following the constrained op-
timization theory [3]. Since the objective function is not jointly convex, we adopt an
effective multiplicative updating algorithm to find a local optimal solution. We prove
Theorem 1 in the following.

We formulate the Lagrange function for optimization L = ||(Bee�B�) ◦ M − P̃||2F +
τ1�

n e. Obviously, B, M, and P̃ are symmetric matrix. Let F = (Bee�B�) ◦ M, then
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ALGORITHM 1: Ranking Causal Anomalies (RCA)
Input: Network Gl denoting the invariant network with n nodes and is represented by an

adjacency matrix A, c is the network propagation parameter, τ is the parameter to
control the sparsity of e, P̃ is the normalized adjacency matrix of the broken
network, M is the logical matrix of Gl (1 with edge, 0 without edge)

Output: Ranking vector e

1 begin
2 for i ← 1to n do
3 Dii ← ∑n

j=1 Ai j ;
4 end
5 D ← diag(D11, . . . , Dii);
6 Ã ← D−1/2AD−1/2;
7 Initialize e with random values between (0,1];
8 B ← (1 − c)(In − cÃ)−1;
9 repeat

10 Update e by Equation (9);
11 until convergence;
12 end

∂

∂em
(F − P̃)2

i j = 2(Fi j − P̃i j)
∂Fi j

em

= 4(Fi j − P̃i j)Mi j(B�
miB j:e) (by symmetry)

= 4B�
mi(Fi j − P̃i j)Mi j(Be) j:.

(10)

It follows that

∂||F − P̃||2F
∂em

= 4B�
m:[(F − P̃) ◦ M](Be), (11)

and thereby

∂||F − P̃||2F
∂e

= 4B�[(F − P̃) ◦ M](Be). (12)

Thus, the partial derivative of Lagrange function with respect to e is

∇eL = 4B�[(Bee�B� − P̃) ◦ M]Be + τ1n, (13)

where 1n is the n × 1 vector of all ones. Using the KKT complementarity condition [3]
for the non-negative constraint on e, we have

∇eL ◦ e = 0. (14)

The above formula leads to the updating rule for e that is shown in Equation (9).

3.3.2. Convergence. We use the auxiliary function approach [20] to prove the con-
vergence of Equation (9) in Theorem 1. We first introduce the definition of auxiliary
function as follows.

Definition 3.1. Z(h, ĥ) is an auxiliary function for L(h) if the conditions

Z(h, ĥ) ≥ L(h) and Z(h, h) = L(h), (15)

are satisfied for any given h, ĥ [20].
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LEMMA 3.1. If Z is an auxiliary function for L, then L is non-increasing under the
update [20],

h(t+1) = argmin
h

Z(h, h(t)). (16)

THEOREM 2. Let L(e) denote the sum of all terms in L containing e. The following
function:

Z(e, ê) = −2
∑

i j

[B�(P̃ ◦ M)�B]i j êiê j

(
1 + log

eie j

êiê j

)

+
∑

i

{B�[M ◦ (Bêê�B�)]Bê}i
e4

i

ê3
i

+ τ

4

∑
i

e4
i + 3ê4

i

ê3
i

(17)

is an auxiliary function for L(e). Furthermore, it is a convex function in e and has a
global minimum.

PROOF. According to Definition 3.1, in this proof, we need to verify that (1) Z(e, ê) ≥
L(e), (2) Z(e, e) = L(e), and (3) Z(e, ê) is a convex function in e, which are respectively
proved as follows.

First, omitting some constants, we write L(e) as

L(e) = −2tr(B�(P̃ ◦ M)�Bee�) + tr([M ◦ (Bee�B�)]�(Bee�B�)) + τ
∑

i

ei. (18)

To prove (1) Z(e, ê) ≥ L(e), we deduce the upper bound for each term in Equation (18).
Using the inequality z ≥ 1 + log z, which holds for any z > 0, we have

eie j

êiê j
≥ 1 + log

eie j

êiê j
.

Then we can write an upper bound for the first term

− 2tr(B�(P̃ ◦ M)�Bee�) = −2
∑

i j

[B�(P̃ ◦ M)�B]i jeie j

≤ −2
∑

i j

[B�(P̃ ◦ M)�B]i j êiê j

(
1 + log

eie j

êiê j

)
.

(19)

For the second term, we can rewrite it by

tr([M ◦ (Bee�B�)]�(Bee�B�)) =
∑

xyijpq

MxyBxieie jByjBxpepeqByq.

Let ei = êisi, e j = ê jsj , ep = êpsp, and eq = êqsq for some non-negative values si, sj ,
sp and sq; we can further rewrite it by∑

xyijpq

MxyBxiêiê jByjBxpêpêqByqsisjspsq

≤
∑

xyijpq

MxyBxiêiê jByjBxpêpêqByq
s4
i + s4

j + s4
p + s4

q

4

= 1
4

⎛⎝∑
i

Qi
e4

i

ê3
i

+
∑

j

Q j
e4

j

ê3
j

+
∑

p

Qp
e4

p

ê3
p

+
∑

q

Qq
e4

q

ê3
q

⎞⎠ =
∑

i

Qi
e4

i

ê3
i

,

(20)
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where Q = B�[M ◦ (Bêê�B�)]Bê. Here, the last equation is obtained by switching
indexes.

For the third term, using the fact that 2ab ≤ a2 + b2, we have

τ
∑

i

ei ≤ τ

2

∑
i

e2
i + ê2

i

êi
≤ τ

4

∑
i

e4
i + 3ê4

i

ê3
i

. (21)

Therefore, by collecting Equation (19), Equation (20), and Equation (21), we have
verified (1) Z(e, ê) ≥ L(e). Moreover, by substituting ê with e in Z(e, ê), we can directly
verify (2) Z(e, e) = L(e).

To prove (3) Z(e, ê) is a convex function in e, we need to show the Hessian matrix
∇2

e Z(e, ê) is positive-definite. First, we derive

∂ Z(e, ê)
∂ei

= −4[B�(P̃ ◦ M)�Bê]i
êi

ei
+ 4{B�[M ◦ (Bêê�B�)]Bê}i

e3
i

ê3
i

+ τ
e3

i

ê3
i

.

Then the second-order derivative is
∂2 Z(e, ê)
∂ei∂e j

= δi j

(
4[B�(P̃ ◦ M)�Bê]i

êi

e2
i

+ 12{B�[M ◦ (Bêê�B�)]Bê}i
e2

i

ê3
i

+ 3τ
e2

i

ê3
i

)
,

where δi j is the Kronecker delta. δi j = 1 if i = j; δi j = 0 otherwise.
Therefore, the Hessian matrix ∇2

e Z(e, ê) is a diagonal matrix with positive diagonal
entries. Hence, we verify that (3) ∇2

e Z(e, ê) is positive-definite and Z(e, ê) is a convex
function in e. This completes the proof.

Based on Theorem 2, we can minimize Z(e, ê) with respect to e with ê fixed. We set
∇e Z(e, ê) = 0, and get the following updating formula:

e ← ê ◦
{

4B�(P̃ ◦ M)�Bê
4B� [

M ◦ (Bêê�B�)
]
Bê + τ1n

} 1
4

, (22)

which is consistent with the updating formula derived from the KKT condition afore-
mentioned.

From Lemma 3.1 and Theorem 2, for each subsequent iteration of updating e, we
have L(e0) = Z(e0, e0) ≥ Z(e1, e0) ≥ Z(e1, e1) = L(e1) ≥ · · · ≥ L(eIter). Thus L(e)
monotonically decreases. Since the objective function Equation (8) is lower bounded by
0, the correctness of Theorem 1 is proven.

3.3.3. Complexity Analysis. In Algorithm 1, we need to calculate the inverse of an n × n
matrix, which takes O(n3) time. In each iteration, the multiplication between two n× n
matrices is inevitable, and thus the overall time complexity of Algorithm 1 is O(Iter ·n3),
where Iter is the number of iterations needed for convergence. In the following section,
we will propose an efficient algorithm that reduces the time complexity to O(Iter · n2).

4. COMPUTATIONAL SPEED-UP

In this section, we will propose an efficient algorithm that avoids the matrix inverse cal-
culations as well as the multiplication between two n×n matrices. The time complexity
can be reduced to O(Iter · n2).

We achieve the computational speed-up by relaxing the objective function in Equa-
tion (8) to jointly optimize r and e. The objective function is shown in the following:

min
e≥0,r≥0

cr�(In − Ã)r + (1 − c)||r − e||2F︸ ︷︷ ︸
Fault propagation

+ λ||(rr�) ◦ M − P̃||2F + τ ||e||1︸ ︷︷ ︸
Vanishing correlation reconstruction

.
(23)
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To optimize this objective function, we can use an alternating scheme. That is, we
optimize the objective with respect to r while fixing e and vice versa. This procedure
continues until convergence. The objective function is invariant under these updates if
and only if r, e are at a stationary point [20]. Specifically, the solution to the optimiza-
tion problem in Equation (23) is based on the following theorem, which is derived from
the KKT complementarity condition [3]. The derivation of it and the proof of Theorem 3
is similar to that of Theorem 1.

THEOREM 3. Alternatively updating e and r according to Equation (24) and Equa-
tion (25) will monotonically decrease the objective function in Equation (23) until con-
vergence,

r ← r ◦
{

Ãr + 2λ(P̃ ◦ M)r + (1 − c)e
r + 2λ

[
(rr�) ◦ M

]
r

} 1
4

, (24)

e ← e ◦
[

2(1 − c)r
τ1n + 2(1 − c)e

] 1
2

. (25)

Based on Theorem 3, we can develop the iterative multiplicative updating algorithm
for optimization similar to Algorithm 1. Due to the page limit, we skip the details.
We refer to this ranking algorithm as R-RCA. From Equation (24) and Equation (25),
we observe that the calculation of the inverse of the n × n matrix and the multiplica-
tion between two n × n matrices in Algorithm 1 are not necessary. As we will see in
Section 8.5, the relaxed versions of our algorithm can greatly improve the computa-
tional efficiency.

5. SOFTMAX NORMALIZATION

In Section 3, we use the product ri · r j as the strength of evidence that the correlation
between node i and j is vanishing (broken). However, it suffers from the extreme values
in the ranking values r. To reduce the influence of the extreme values or outliers,
we employ the softmax normalization on the ranking values r. The ranking values
are nonlinearly transformed using the sigmoidal function before the multiplication is
performed. Thus, the reconstruction error is expressed by ||(σ (r)σ�(r)) ◦ M − P̃||2F ,
where σ (·) is the softmax function with

σ (r)i = eri∑n
k=1 erk

, (i = 1, . . . , n). (26)

The corresponding objective function in Algorithm 1 is modified as follows:

min
e≥0

||(σ (Be)σ�(Be)) ◦ M − P̃||2F + τ ||e||1. (27)

Similarly, the objective function for Equation (23) is modified as follows:

min
e≥0,r≥0

cr�(In − Ã)r + (1 − c)||r − e||2F + λ||(σ (r)σ�(r)) ◦ M − P̃||2F + τ ||e||1. (28)

The optimization of these two objective functions are based on the following two
theorems.

THEOREM 4. Updating e according to Equation (29) will monotonically decrease the
objective function in Equation (27) until convergence,

e ← e ◦
{

4B�	(P̃ ◦ M)σ (Be)
4

[
B� (

	σ (Be)σ�(Be)
) ◦ M

]
σ (Be) + τ1n

} 1
4

, (29)
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where 	 = {diag[σ (Be)] − σ (Be)σ�(Be)}.
THEOREM 5. Updating r according to Equation (30) will monotonically decrease the

objective function in Equation (28) until convergence,

r ← r ◦
{

Ãr + 2λ[((σ (r)1�
n ) ◦ P̃ + ρ�) ◦ M]σ (r) + (1 − c)e

r + 2λ[((σ (r) ◦ σ (r))σ�(r) + σ (r)(σ�(r)P̃)) ◦ M]σ (r)

} 1
4

, (30)

where � = σ (r)σ�(r) and ρ = σ�(r)σ (r).

Theorem 4 and Theorem 5 can be proven with a similar strategy to that of Theorem 1.
We refer to the ranking algorithms with softmax normalization (Equation (27) and
Equation (28)) as RCA-SOFT and R-RCA-SOFT, respectively.

6. TEMPORAL SMOOTHING ON MULTIPLE BROKEN NETWORKS

As discussed in Section 1, although the number of anomaly nodes could increase due to
fault propagation in the network, the root cause anomalies will be stable within a short
time period T [17]. Based on this intuition, we further develop a smoothing strategy
by jointly considering the temporal broken networks. Specifically, we add a smoothing
term ||e(t) − e(t−1)||22 to the objective functions. Here, e(t−1) and e(t) are causal anomaly
ranking vectors for two successive time points. For example, the objective function of
algorithm RCA with temporal broken networks smoothing is shown in Equation (31),

min
e(t)≥0,1≤t≤T

T∑
t=1

[||(Be(t)(e(t))�B�) ◦ M − P̃(t)||2F + τ ||e(t)||1] + α||e(t) − e(t−1)||22︸ ︷︷ ︸
Temporal smoothing

. (31)

Here, P̃(t) is the degree-normalized adjacency matrix of broken network at time point
t. Similarly to the discussion in Section 3.3, we can derive the updating formula of
Equation (31) as follows:

e(t) ← e(t) ◦
{

4B�(P̃(t) ◦ M)�Be(t) + 2αe(t−1)

4B� [
M ◦ (Be(t)(e(t))�B�)

]
Be(t) + τ1n + 2αe(t)

} 1
4

. (32)

The updating formula for R-RCA, RCA-SOFT, and R-RCA-SOFT with temporal bro-
ken networks smoothing is similar. Due to the space limit, we skip the details. We refer
to the ranking algorithms with temporal networks smoothing as T-RCA, T-R-RCA,
T-RCA-SOFT, and T-R-RCA-SOFT respectively.

7. LEVERAGING PRIOR KNOWLEDGE

In real-life applications, we may have prior knowledge that reflects to what extent
a node is harmed by the causal anomalies at a certain time point. In this section, we
extend our RCA model to a semi-supervised setting to incorporate such prior knowledge
so the performance of causal anomaly inference can be further enhanced.

7.1. Leveraging Node Attributes

One common type of prior knowledge can be represented by a numeric attribute for
each node that measures the degree that a node is anomalous at the observation time
point. For example, the attribute value can be the absolute bias of the monitoring data
of a node that deviates from its predicted normal value at a time point [6].

Let vi ≥ 0 represent the anomalous degree of node i; our goal is to leverage these
attributes in a principled manner to improve the causal anomaly inference capability
of our model. It is important to note that, usually the attributes only partially covers
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the nodes in the invariant network due to the short of prior knowledge. That is, let V be
the set of all nodes in the invariant network, then vi is only available for node i ∈ Vp,
where Vp ⊆ V. To account for this sparsity of prior knowledge, we define an indicator
ui ∈ {0, 1} for each node i s.t. ui = 1 if node i has a valid vi; ui = 0 otherwise.

Because vi measures the degree that node i is impacted by causal anomalies, we
can use ri in Equation (6) to approximate vi. Specifically, we want to minimize the
inconsistency of ui(ri −vi)2. Let v ∈ R

n×1
+ with the ith entry as vi (note vi = 0 if i 
∈ Vp),

and Du ∈ {0, 1}n×n be a diagonal matrix with (Du)ii as ui; then we can obtain a matrix
form of the inconsistencies as (r − v)�Du(r − v). By integrating this loss function with
our RCA model in Equation (6), and replacing r by Be, we obtain an objective function
that enables node attributes as follows:

min
e≥0

||(Bee�B�) ◦ M − P̃||2F + τ ||e||1 + β(Be − v)�Du(Be − v)︸ ︷︷ ︸
Leveraging prior knowledge

,
(33)

where β is a parameter that measures the importance of prior knowledge. Intuitively,
the more reliable the prior knowledge, the larger the value of β.

The objective function in Equation (33) can be optimized by an updating formula as
summarized by the following theorem. The derivation of this formula follows a similar
strategy as those discussed in Section 3.3.

THEOREM 6. Updating e according to Equation (34) will monotonically decrease the
objective function in Equation (33) until convergence,

e ← e ◦
{

4B�(P̃ ◦ M)�Be + 2βB�(u ◦ v)
4B� [

M ◦ (Bee�B�)
]
Be + 2βB� [

u ◦ (Be)
] + τ1n

} 1
4

. (34)

The formal algorithm that considers node attributes can be similarly formulated as
Algorithm 1. In the following, we refer to the semi-supervised ranking algorithm using
Equation (34) as RCA-SEMI.

7.2. Learning the Reliability of Prior Knowledge

In real practice, because of noises, not all node attributes are reliable. It is likely
that a considerable part of {vi} is inconsistent with the current broken status of the
invariant network and can mislead causal anomaly inference if we trust them without
differentiation. To avoid the problem caused by noisy node attributes, we next develop
a strategy to automatically select reliable node attributes from unreliable ones to
improve the robustness of our model.

In Equation (33), all valid node attributes vi are treated equally by assigning the
same weights ui = 1. A more practical design is to allow ui to vary based on the
reliability of vi. Ideally, ui is small if vi is inconsistent with the anomalous status
of node i as inferred from fault propagation. This inconsistency can be measured by
(ri −vi)2. Therefore, we can modify the optimization problem in Equation (33) as follows
to allow automatic learning of u:

min
e,u≥0

||(Bee�B�) ◦ M − P̃||2F + τ ||e||1 + β
∑
i∈VP

ui(Be − v)2
i + γ

∑
i∈Vp

u2
i

s.t.
∑
i∈Vp

ui = |Vp|.
(35)

In the above equation, we enforce the equality constraint to allow different ui to be
correlated and comparable for selection purpose. The �2 norm on u is enforced to avoid
trivial solutions. Without it, all entries in u will be zeros except for ui corresponding to
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the least inconsistency (Be − v)2
i . Here, γ is a parameter controlling the complexity of

u. Typically, larger γ results in more non-zero entries in u.
Because the problem in Equation (35) is not jointly convex in e and u, we take an

alternating minimization approach. The solution to the subproblem w.r.t. e is the same
as Equation (34). Next, we discuss the solution to u.

First, we denote û = u(Vp) to be the projection of u on node set Vp, and n̂ = |Vp|. Let
w ∈ R

n̂×1
+ with wi = (Be − v)2

i for i ∈ Vp. Then we can write the subproblem w.r.t. û as

min
û≥0

βû�w + γ û�û

s.t. û�1n̂ = n̂,
(36)

where 1n̂ is a length-n̂ vector with all entries as 1.
Equation (36) is a quadratic optimization problem with respect to u, whose La-

grangian function can be formulated as follows:

Lu(û, η, θ ) = βû�w + γ û�û − û�η − θ (û�1n̂ − n̂), (37)

where η = [η1, η2, . . . , ηn̂]� ≥ 0 and θ ≥ 0 are the Lagrangian multipliers. The optimal
û∗ should satisfy the following KKT conditions [3]:

(1) Stationary condition. ∇û∗Lu(û, η, θ ) = βw + 2γ û∗ − η − θ1n̂ = 0n̂
(2) Feasibility condition. û∗ ≥ 0n̂, (û∗)�1n̂ − 1 = 0
(3) Complementary slackness. ηiû∗

i = 0, 1 ≤ i ≤ n̂
(4) Nonnegativity condition. η ≥ 0n̂

From the stationary condition, we can obtain ûi as

ûi = ηi + θ − wi

2γ
,

where we can observe that ûi depends on the specification of ηi and θ . Similarly to
Reference [30], we divide the problem into three cases as follows:

(1) When θ − wi > 0, since ηi ≥ 0, we have hatui > 0. From the complementary
slackness, ηiûi = 0, we have ηi = 0, and, therefore, ûi = θ−wi

2γ
.

(2) When θ − wi < 0, since ûi ≥ 0, we have ηi > 0. Because ηiûi = 0, we have ûi = 0.
(3) When θ − wi = 0, we have ûi = ηi

2γ
. Since ηiûi = 0, we have ûi = 0 and ηi = 0.

Therefore, if we sort w1 ≤ w2 ≤ · · · ≤ wn̂, then there exists θ̃ > 0 s.t. θ̃ − wt > 0 and
θ̃ − wt ≤ 0. Then ûi can be solved as follows:

ûi =
{ θ−wi

2γ
, if i ≤ t

0, otherwise,
(38)

where θ can be solved by using
∑t

i=1 ûi = n̂, that is,

θ = 2γ n̂ + ∑t
i=1 wi

t
. (39)

Equation (38) implies the intuition of the assignment of ui. That is, when wi is
large, ui is small. Recall that wi represents the inconsistency between propagation
score ri and node attribute vi, which may come from the noises in the prior knowledge.
Therefore, Equation (38) assigns small weights to large inconsistencies to reduce the
negative impact of noisy node attributes and get a consensus result and, hence, improve
the robustness of our model.
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ALGORITHM 2: W-RCA-SEMI
Input: Network Gl denoting the invariant network with n nodes and is represented by an

adjacency matrix A, c is the network propagation parameter, τ is the parameter to
control the sparsity of e, P̃ is the normalized adjacency matrix of the broken
network, M is the logical matrix of Gl (1 with edge, 0 without edge), v is the vector
of node attributes, Vp is the set of nodes having valid node attributes, β is a
parameter to control semi-supervision, γ is a parameter to control the complexity
of the learned weights

Output: Ranking vector e, weight vector u

1 begin
2 Initialize ûi = 1, ∀i ∈ Vp;
3 repeat
4 Set ui = ûi ∀i ∈ Vp; ui = 0 ∀i 
∈ Vp;
5 Inferring e by Equation (34);
6 Compute wi = ((Be)i − vi)2, ∀i ∈ Vp;
7 Sort {wi}1≤i≤n̂ in increasing order;
8 t ← n̂ + 1;
9 do

10 t ← t − 1;

11 θ ← 2γ n̂+∑t
i=1 wi

t ;
12 while θ − wt ≤ 0 and t > 1;
13 for i ← 1 to t do
14 ûi ← θ−wi

2γ
;

15 end
16 for i ← t + 1 to n̂ do
17 ûi ← 0;
18 end
19 until convergence;
20 end

In Equation (39), γ relates to the selectivity of the model. When γ is very large, ûi
becomes large, and all node attributes will be selected with nearly equal weights. When
γ is very small, at least one node attribute (with the smallest wi) will be selected.
Therefore, we can use γ to control how many node attributes will be integrated for
causal anomaly ranking.

From Equation (38) and Equation (39), we can search the value of t from n̂ to 1
decreasingly [30]. Once θ − wt > 0, then we find the value of t. Then we can calculate
û1, . . . , ûn̂ according to Equation (38). The algorithm for solving u is involved in Algo-
rithm 2. In Algorithm 2, e and u are optimized alternately. Since both optimization
procedures decrease the value of the objective function in Equation (35) and the objec-
tive function value is lower bounded by 0, Algorithm 2 is guaranteed to converge to a
local minima of the optimization problem in Equation (35). In the following, we refer
to the semi-supervised ranking algorithm with weight learning as W-RCA-SEMI.

8. EMPIRICAL STUDY

In this section, we perform extensive experiments to evaluate the performance of the
proposed methods (summarized in Table I). We use both simulated data and real-
world monitoring datasets. For comparison, we select several state-of-the-art methods,
including mRank and gRank in References [7, 16], and [26]. For all the methods,
the tuning parameters were tuned using cross validation. We use several evaluation
metrics, including precision, recall, and nDCG [15] to measure the performance. The
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Fig. 3. Comparison on synthetic data (K, p = 10).

precision and recall are computed on the top-K ranking result, where K is typically
chosen as twice the actual number of ground-truth causal anomalies [15, 26]. The nDCG
of the top-p ranking result is defined as nDCGp = DCGp

IDCGp
, where DCGp = ∑p

i=1
2reli−1

log2(1+i) ,
IDCGp is the DCGp value on the ground truth, and p is smaller than or equal to the
actual number of ground-truth anomalies. The reli represents the anomaly score of the
ith item in the ranking list of the ground truth.

8.1. Simulation Study

We first evaluate the performance of the proposed methods using simulations. We have
followed References [7, 26] in generating the simulation data.

8.1.1. Data Generation. We first generate 5,000 synthetic time-series data to simulate
the monitoring records.2 Each time series contains 1,050 time points. Based on the
invariant model introduced in Section 2.1, we build the invariant network by using
the first 1,000 time points in the time series. This generates an invariant network
containing 1,551 nodes and 157,371 edges. To generate invariant network of different
sizes, we randomly sample 200, 500, and 1,000 nodes from the whole invariant network
and evaluate the algorithms on these sub-networks.

To generate the root cause anomaly, we randomly select 10 nodes from the network
and assign each of them an anomaly score between 1 and 10. The ranking of these
scores is used as the ground truth. To simulate the anomaly prorogation, we further
use these scores as the vector e in Equation (6) and calculate r (c = 0.9). The values
of the top-30 time series with largest values in r are then modified by changing their
amplitude value with the ratio 1 + ri. That is, if the observed values of one time series
is y1, after changing it from y1 to y2, the manually injected degree of anomaly |y2−y1|

|y1|
is equal to 1 + ri. We denote this anomaly generation scheme as amplitude-based
anomaly generation.

8.1.2. Performance Evaluation. Using the simulated data, we compare the performance
of different algorithms. In this example, we only consider the training time series as
one snapshot; multiple snapshot cases involving temporal smoothing will be examined
in the real datasets. Due to the page limit, we report the precision, recall, and nDCG
for only the top-10 items considering that the ground truth contains 10 anomalies.
Similar results can be observed with other settings of K and p. For each algorithm, the
reported result is averaged over 100 randomly selected subsets of the training data.

From Figure 3, we have several key observations. First, the proposed algorithms
significantly outperform other competing methods, which demonstrates the advantage
of taking into account fault prorogation in ranking casual anomalies. We also notice
that performance of all ranking algorithms will decline on larger invariant networks

2http://cs.unc.edu/%7Eweicheng/synthetics5000.csv.
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Fig. 4. Performance with different noise ratio (K, p = 10).

Table II. Examples of Categories and Monitors

Categories Samples of Measurements
CPU utilization, user usage time, IO wait time
DISK # of write operations, write time, weighted IO time
MEM run queue, collision rate, UsageRate
NET error rate, packet rate
SYS UTIL, MODE UTIL

with more nodes, indicating that anomaly ranking becomes more challenging on net-
works with more complex behaviour. However, the ranking result with softmax is less
sensitive to the size of the invariant network, suggesting that the softmax normaliza-
tion can effectively improve the robustness of the algorithm. This is quite beneficial in
real-life applications, especially when data are noisy. Finally, we observe that RCA and
RCA-SOFT outperform R-RCA and R-RCA-SOFT, respectively. This implies that the
relaxed versions of the algorithms are less accurate. Nevertheless, their accuracies are
still very comparable to those of the RCA and RCA-SOFT methods. In addition, the
efficiency of the relaxed algorithms is greatly improved, as discussed in Section 4 and
Section 8.5.

8.1.3. Robustness Evaluation. Practical invariant network and broken edges can be quite
noisy. In this section, we further examine the performance of the proposed algorithms
w.r.t. different noise levels. To do this, we randomly perturb a portion of non-broken
edges in the invariant network. Results are shown in Figure 4. We observe that even
when the noise ratio approaches 50%, the precision, recall, and nDCG of the proposed
approaches still attain 0.5. This indicates the robustness of the proposed algorithms.
We also observe that when the noise ratio is very large, RCA-SOFT and R-RCA-SOFT
work better than RCA and R-RCA, respectively. This is similar to those observations
made in Section 8.1.2. As has been discussed in Section 5, the softmax normalization
can greatly suppress the impact of extreme values and outliers in r, thus improving
the robustness.

8.2. Ranking Causal Anomalies on Bank Information System Data

In this section, we apply the proposed methods to detect causal abnormal components
on a Bank Information System (BIS) dataset [7, 26]. The monitoring data are collected
from real-world bank information system logs, which contain 11 categories. Each cate-
gory has a varying number of time series, and Table II gives five categories as examples.
The dataset contains the flow intensities collected every 6s. In total, we have 1,273 flow
intensity time series. The training data are collected at normal system states, where
each time series has 168 time points. The invariant network is then generated on the
training data as described in Section 2.1. The testing data of the 1,273 flow inten-
sity time series are collected during abnormal system states, where each time series
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Table III. Data Set Description

Data Set #Monitors #invariant links #broken edges at given time point
BIS 1273 39116 18052

Coal Plant 1625 9451 56

Fig. 5. Two example monitoring data of BIS.

Fig. 6. Comparison on BIS data.

contain 169 time points. We track the changes of the invariant network with the testing
data using the method described in Section 2.1. Once we obtain the broken networks at
different time points, we will then perform causal anomaly ranking in these temporal
slots jointly. Properties of the networks constructed are summarized in Table III.

Based on the knowledge from system experts, the root cause anomaly at t = 120 in
the testing data is related to “DB16.” An illustration of two “DB16”-related monitor-
ing data are shown in Figure 5. We highlight t = 120 with a red square. Obviously,
their behaviour looks anomalous from that time point onward. Due to the complex
dependency among different monitoring time series (measurements), it is impractical
to obtain a full ranking of abnormal measurement. Fortunately, we have a unique se-
mantic label associated with each measurement. For example, some semantic labels
read “DB16:DISK hdx Request” and “WEB26 PAGEOUT RATE.” Thus, we can extract
all measurements whose titles have the prefix “DB16” as the ground-truth anomalies.
The ranking score is determined by the number of broken edges associated with each
measurement. Here our goal is to demonstrate how the top-ranked measurements se-
lected by our method are related to the “DB16” root cause. Altogether, there are 80
measurements related to “DB16,” so we report the precision of recall with K ranging
from 1 to 160 and the nDCG with p ranging from 1 to 80.

The results are shown in Figure 6. The relative performance of different approaches
is consistent with the observations in the simulation study. Again, the proposed algo-
rithms outperform baseline methods by a large margin. To examine the top-ranked
items more clearly, we list the top-12 results of different approaches in Table IV and re-
port the number of “DB16”-related monitors in Table V. From Table IV, we observe that
the three baseline methods only report one “DB16”-related measurement in the top-12
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Table V. Number of “DB16” Related Monitors in Top 32 Results on BIS Data(t:120)

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT
10 7 4 14 16 13 17

Fig. 7. Performance at t:120 vs. t:122 on BIS data (p, K = 80).

results, and the actual rank of the “DB16”-related measurement appear lower (worse)
than that of the proposed methods. We also notice that the ranking algorithms with
softmax normalization outperform others. From Tables IV and V, we can see that top-
ranked items reported by RCA-SOFT and R-RCA-SOFT are more relevant than those
reported by RCA and R-RCA, respectively. This clearly illustrates the effectiveness of
the softmax normalization in reducing the influence of extreme values or outliers in
the data.

As discussed in Section 1, the root anomalies could further propagate from one
component to related ones over time, which may or may not necessarily relate to
“DB16.” Such anomaly propagation makes anomaly detection even harder. To study
how the performance varies at different time points, we compare the performance at
t = 120 and t = 122, respectively in Figure 7 (p, K = 80). Clearly, the performance
declines for all methods. However, the proposed methods are less sensitive to anomaly
propagation than others, suggesting that our approaches can better handle the fault
propagation problem. We believe this is attributed to the network diffusion model that
explicitly captures the fault propagation processes. We also list the top-12 abnormal
at t = 122 in Table VI. Due to the page limit, we only show the results of mRank,
gRank, RCA-SOFT, and R-RCA-SOFT. By comparing the results in Tables IV and VI,
we can observe that RCA-SOFT and R-RCA-SOFT significantly outperform mRank
and gRank, where the latter two methods, based on the percentage of broken edges,
are more sensitive to anomaly propogation.

We further validate the effectiveness of proposed methods with temporal smoothing.
We report the top-12 results of different methods with smoothing at two successive time
points t = 120 and t = 121 in Table VII. The number of “DB16”-related monitors in the
top-12 results is summarized in Table VIII. From Tables VII and VIII, we observe a
significant performance improvement of our methods with temporal broken networks
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Table VI. Top 12 Anomalies on BIS Data (t:122)

mRank gRank RCA-SOFT R-RCA-SOFT
WEB21:NET eth1 BYNETIF WEB21:NET eth0 BYNETIF DB17:DISK hdm Block DB17:DISK hdm Block
WEB21:NET eth0 BYNETIF WEB21:NET eth1 BYNETIF DB17:DISK hdba Block DB17:DISK hdba Block

WEB21:FREE UTIL HUB18:MEM UsageRate DB16:DISK hdm Block DB16:DISK hdm Block

AP12:DISK hd45 Block WEB21:FREE UTIL DB18:DISK hdm Block DB16:DISK hdj Request

AP12:DISK hd1 Block WEB26:PAGEOUT RATE DB16:DISK hdj Request DB16:DISK hdax Request
DB18:DISK hday Block AP12:DISK hd45 Block DB18:DISK hdba Block DB18:DISK hdm Block

DB18:DISK hdk Block AP12:DISK hd1 Block DB16:DISK hdax Request DB18:DISK hdx Request

DB18:DISK hday Request DB18:DISK hday Block DB16:DISK hdba Block DB18:DISK hdba Block

DB18:DISK hdk Request DB18:DISK hdk Block DB18:DISK hdx Request DB16:DISK hdba Block
WEB26:PAGEOUT RATE DB18:DISK hday Request DB18:DISK hdbl Request DB18:DISK hdax Request

DB17:DISK hdm Block DB18:DISK hdk Request DB16:DISK hdx Busy DB16:PACKET Inputx

DB16:DISK hdm Block AP11:DISK hd45 Block DB16:DISK hdx Request DB18:DISK hdbl Request

Table VII. Top-12 Anomalies Reported by Methods with Temporal Smoothing on BIS Data (t:120-121)

T-RCA T-RCA-SOFT T-R-RCA T-R-RCA-SOFT
WEB14:NET eth0 BYNETIF DB17:DISK hdm Block WEB14:NET eth0 BYNETIF DB17:DISK hdm Block

WEB16:DISK BYDSK DB17:DISK hdba Block WEB21:NET eth0 BYNETIF DB17:DISK hdba Block

DB18:DISK hdba Block DB16:DISK hdm Block WEB16:DISK BYDSK PHYS DB16:DISK hdm Block
DB18:DISK hdm Block DB18:DISK hdm Block WEB21:FREE UTIL DB18:DISK hdm Block

DB17:DISK hdba Block DB16:DISK hdj Request DB15:PACKET Output DB16:DISK hdj Request

DB16:DISK hdm Block DB18:DISK hdba Block DB16:DISK hdj Request DB18:DISK hdba Block

DB17:DISK hdm Block DB16:DISK hdax Request DB17:DISK hdm Block DB16:DISK hdax Request

DB16:DISK hdba Block DB16:DISK hdba Block DB16:DISK hdba Block DB18:DISK hdx Request

DB16:DISK hdj Request DB18:DISK hdx Request DB17:DISK hday Block DB16:DISK hdba Block

DB16:DISK hdax Request DB18:DISK hdbl Request DB16:DISK hdm Block DB18:DISK hdbl Request

DB16:DISK hdx Busy DB16:DISK hdx Busy DB16:DISK hdax Request DB16:DISK hdx Request

DB16:DISK hdbl Busy DB16:DISK hdx Request DB18:DISK hdba Block DB16:DISK hdx Busy

Table VIII. Comparison on the Number of “DB16”-Related Anomalies in Top-12
Results on BIS Data

RCA RCA-SOFT R-RCA R-RCA-SOFT
Without temporal smoothing 4 4 3 4

With temporal smoothing 6 6 4 6

smoothing compared with those without smoothing. As discussed in Section 6, since
causal anomalies of a system usually do not change within a short period of time,
utilizing such smoothness can effectively suppress noise and thus give better ranking
accuracy.

8.3. Fault Diagnosis on Coal Plant Data

In this section, we test the proposed methods in the application of fault diagnosis
on a coal plant cyber-physical system data. The dataset contains time-series data
collected through 1,625 electric sensors installed on different components of the coal
plant system. Using the invariant model described in Section 2.1, we generate the
invariant network that contains 9,451 invariant links. For privacy reasons, we remove
sensitive descriptions of the data.

Based on knowledge from domain experts, in the abnormal stage the root cause is
associated with component “X0146.” We report the top-12 results of different ranking
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Table IX. Top Anomalies on Coal Plant Data

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT

Y0039 Y0256 Y0256 X0146 X0146 X0146 X0146

X0128 Y0045 X0146 Y0045 Y0256 X0128 X0166
Y0256 Y0028 F0454 X0128 F0454 F0454 X0144

H0021 X0146 X0128 Y0030 J0079 Y0256 X0165

X0146 X0057 Y0039 X0057 Y0308 Y0039 X0142
X0149 X0061 X0166 X0158 X0166 Y0246 J0079
H0022 X0068 X0144 X0068 X0144 Y0045 X0164
F0454 X0143 X0149 X0061 X0128 Y0028 X0145
H0020 X0158 J0085 X0139 X0165 X0056 X0143
X0184 X0164 X0061 X0143 X0142 J0079 X0163
X0166 J0164 Y0030 H0021 H0022 X0149 J0164
J0164 H0021 J0079 F0454 X0143 X0145 X0149

Fig. 8. Egonet of node “X0146” and “Y0256” in invariant network and vanishing correlations (red edges) on
coal plant data.

algorithms in Table IX. We observe that the proposed algorithms all rank component
“X0146” the highest, while the baseline methods could give higher ranks to other com-
ponents. In Figure 8(a), we visualize the egonet of the node “X0146” in the invariant
network, which is defined as the one-step neighborhood around node “X0146,” includ-
ing the node itself, direct neighbors, and all connections among these nodes in the
invariant network. Here, green lines denote the invariant link, and red lines denote
vanishing correlations (broken links). Since the node “Y0256” is top ranked by the base-
line methods, we also visualize its egonet in Figure 8(b) for a comparison. There are 80
links related to “X0146” in the invariant network, and 14 of them are broken. Namely
the percentage of broken edges is only 17.5% for a truly anomalous component. In
contrast, the percentage of broken edges for the node “Y0256” is 100%, namely a false-
positive node can have a very high percentage of broken edges in practice. This explains
why baseline approaches using the percentage of broken edges could fail, because the
percentage of broken edges does not serve as a reliable evidence of the degree of causal
anomalies. In comparison, our approach takes into account the global structures of the
invariant network via network propagation, and thus the resultant ranking is more
meaningful.

8.4. Evaluation of Leveraging Prior Knowledge

In this section, we evaluate the effectiveness of the semi-supervised algorithms pro-
posed in Section 7 using the BIS dataset. We simulate node attributes by the following
strategy. First, we set “DB16”-related components as seeds (recall these components
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Fig. 9. Comparison on BIS data using prior knowledge. RCA-SEMI:Vp1, RCA-SEMI:Vp2, and RCA-SEMI:Vp3
refer to running RCA-SEMI with Vp1, Vp2, and Vp3, respectively.

Fig. 10. Comparison on BIS data with noisy prior knowledge.

are ground-truth anomalies) and run a label propagation algorithm to obtain a score
for each node. Then, we set the scores of “DB16”-related nodes to zero and treat the
remaining non-zero scores as the attributes of other nodes. Finally, we randomly di-
vide the remaining attributed nodes Vp into three equal parts V1, V2, and V3 and then
form Vp1 = V1, Vp2 = {V1,V2} and Vp3 = {V1,V2,V3}. Algorithm RCA-SEMI is run with
Vp1, Vp2, and Vp3, respectively, to evaluate its capability to uncover “DB16”-related
components with the guidance of these different partial prior knowledge.

Figure 9 shows the results of RCA-SEMI. For clarity, we only show RCA as a base-
line. We also consider another degraded version of RCA-SEMI, which is shown as
“PriorOnly.” This method solves e by minimizing (Be − v)�Du(Be − v) + τ‖e‖1, which
only uses node attributes without considering label propagation. From Figure 9, we
observe that RCA-SEMI can effectively incorporate node attributes to improve causal
anomaly inference accuracy. More prior knowledge typically results in better accuracy.
The poor performance of “PriorOnly” also indicates that using partial prior knowledge
alone is not effective. This demonstrates the importance of taking into account the fault
propagation when incorporating partial node attributes.

Next, we evaluate the robustness of Algorithm 2, W-RCA-SEMI. For this, we manu-
ally inject noise into node attributes. Specifically, we randomly pick a certain number
of nodes with non-zero attributes and change their attributes to a large value (e.g.,
3). By varying the number of noisy nodes, we can evaluate the impact of noise on
RCA-SEMI and W-RCA-SEMI. Figure 10(a) shows the area under the precision-recall
curve (PRAUC) w.r.t. varying number of noisy nodes. Higher PRAUC indicates better
accuracy. From Figure 10(a), we observe that the performance of RCA-SEMI is largely
impacted by the injected noisy attributes, while W-RCA-SEMI performs stably. By
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Fig. 11. Number of iterations to converge and time cost comparison.

Fig. 12. Running time on real datasets.

investigating the learned weights in u, we get the insights of W-RCA-SEMI. Fig-
ure 10(b) presents the learned weights ui vs. the inconsistency of (ei−vi)2 for nodes hav-
ing valid vi ’s, where the nodes are ordered by descending order of ui. As can be seen, W-
RCA-SEMI effectively assigns small weights to large inconsistencies. Thus it can reduce
the negative impacts of noisy attributes and obtain robust performance as shown in
Figure 10(a).

8.5. Time Performance Evaluation

In this section, we study the efficiency of proposed methods using the following metrics:
(1) the number of iterations for convergence, (2) the running time (in seconds), and
(3) the scalability of the proposed algorithms. Figure 11(a) shows the value of the
objective function with respect to the number of iterations on different datasets. We
can observe that the objective value decreases steadily with the number of iterations.
Typically less than 100 iterations are needed for convergence. We also observe that our
method with softmax normalization takes fewer iterations to converge. This is because
the normalization is able to reduce the influence of extreme values [25]. We also report
the running time of each algorithm on the two real datasets in Figure 12. We can see
that the proposed methods can detect causal anomalies very efficiently, even with the
temporal smoothing module.

To evaluate the computational scalability, we randomly generate invariant networks
with different number of nodes (with network density=10) and examine the computa-
tional cost. Here 10% of the edges is randomly selected as broken links. Using simulated
data, we compare the running time of RCA, R-RCA, RCA-SOFT, and R-RCA-SOFT.
Figure 11(b) plots the running time of different algorithms w.r.t. the number of nodes
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Fig. 13. Parameter study results. The shown nDCG values are obtained by varying one parameter while
fixing others.

in the invariant network. We can see that the relaxed versions of our algorithm are
computationally more efficient than the original RCA and RCA-SOFT. These results
are consistent with the complexity analysis in Section 4.

8.6. Parameter Study

There are three major parameters, c, τ , and λ, in the proposed RCA family algorithms.
c is the tradeoff parameter controlling the propagation strength (see Section 3.1). τ
is a parameter controlling the sparsity of the learned vector e in Equation (8). λ is
used for balancing the propagation and broken network reconstruction in the relaxed
RCA model in Equation (23). Next, we use the BIS dataset to study the impact of each
parameter on the causal anomaly ranking accuracy.

Figure 13 shows the anomaly inference accuracy by varying each parameter in turn
while fixing others. The accuracy is measured using nDCGp with p equal to the number
of ground-truth anomalies. Using other metrics will give similar trends, and thus they
are omitted for brevity. From the figure, we observe that RCA and R-RCA perform sta-
bly in a relatively wide range of each parameter, which demonstrates the robustness of
the proposed models. Specifically, the best c lies around 0.6, indicating the importance
to consider sufficient fault propagations. Note that when c = 0 or c = 1, there will be
no propagation or no learning of e, respectively (see Equation (6)). For τ , its best value
is around 1 and 10, which suggests a sparse vector e, because usually there is only
a small number of causal anomalies. Finally, the sharp accuracy increase by chang-
ing λ from 0 to non-zero values indicates the effectiveness of the relaxed RCA model
in Equation (23). The best λ lies between 0.5 and 2, suggesting the relatively equal
importances of fault propagation and broken network reconstruction in Equation (23).

9. RELATED WORK

In this section, we review related work on anomaly detection and system diagnosis, in
particular along the following two categories: (1) fault detection in distributed systems
and (2) graph-based methods.

For the first category, Yemini et al. [29] proposed to model event correlation and locate
system faults using known dependency relationships between faults and symptoms. In
real applications, however, it is usually hard to obtain such relationships precisely. To
alleviate this limitation, Jiang et al. [16] developed several model-based approaches
to detect the faults in complex distributed systems. They further proposed several
Jaccard Coefficient-based approaches to locate the faulty components [17, 18]. These
approaches generally focus on locating the faulty components, and they are not capable
of spotting or ranking the causal anomalies.

Recently, graph-based methods have drawn a lot of interest in system anomaly de-
tections [2, 5], either in static graphs or dynamic graphs [2]. In static graphs, the main
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task is to spot anomalous network entities (e.g., nodes, edges, subgraphs) given the
graph structure [4, 10]. For example, Akoglu et al. [1] proposed the OddBall algorithm
to detect anomalous nodes in weighted graphs. Liu et al. [22] proposed to use frequent
subgraph mining to detect non-crashing bugs in software flow graphs. However, these
approaches only focus on a single graph; in comparison, we take into account both
the invariant graph and the broken correlations, which provide a more dynamic and
complete picture for anomaly ranking. On dynamic graphs, anomaly detection aims at
detecting abnormal events [23]. Most approaches along this direction are designed to
detect anomaly timestamps in which suspicious events take place but not to perform
ranking on a large number of system components. Sun et al. proposed to use temporal
graphs for anomaly detection [24]. In their approach, a set of initial suspects need to
be provided; then internal relationships among these initial suspects are characterized
for better understanding of the root cause of these anomalies.

In using the invariant graph and the broken invariance graph for anomaly detection,
Jiang et al. [17] used the ratio of broken edges in the invariant network as the anomaly
score for ranking; Ge et al. [7] proposed mRank and gRank to rank causal anomalies;
and Tao et al. [26] used the loopy belief propagation method to rank anomalies. As
has been discussed, these algorithms rely heavily on the percentage of broken edges in
egonet of a node. Such local approaches take into account neither the global network
structures nor the global fault propagation spreading on the network. Therefore, the
resultant rankings can be sub-optimal.

There is a number of correlation network-based system anomaly localization methods
[9, 13, 14] that treat the correlation changes between system components as basic
evidence of fault occurrence. Similarly to the invariant graph-based methods, these
methods use the correlation changes in the egonet of each node at different time points
to locate anomalous nodes. Basically, if there are more correlation changes happening
in the egonet of a node, then it is more suspicious to be an anomaly. However, none
of these approaches consider fault propagations. Therefore, they cannot exploit the
whole structure of a network and are inferior in locating causal anomalies. Some other
methods can track the eigenvectors of temporal correlation networks to detect the
anomalous changes of a whole system [11, 12], but they do not rank nodes for locating
causal anomalies and differ from our work in problem settings.

10. CONCLUSIONS

Detecting causal anomalies on monitoring data of distributed systems is an im-
portant problem in data-mining research. Robust and scalable approaches that can
model the potential fault propagation are highly desirable. We develop a network
diffusion-based framework, which simultaneously takes into account fault propaga-
tion on the network as well as reconstructing anomaly signatures using propagated
anomalies. Our approach can locate causal anomalies more accurately than existing ap-
proaches; at the same time, it is robust to noise and computationally efficient. Moreover,
when prior knowledge on anomalous status of nodes are available, our approach can
effectively incorporate them to further enhance anomaly detection accuracy. When the
prior knowledge is noisy, our approach can also automatically identify reliable infor-
mation and reduce the negative impact of noise. Using both synthetic and real-life
datasets, we show that the proposed methods outperform other competitors by a large
margin.
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