
Hierarchical Gaussian Mixture based Task Generative
Model for Robust Meta-Learning

Yizhou Zhang1∗, Jingchao Ni2∗‡, Wei Cheng3, Zhengzhang Chen3, Liang Tong4∗,
Haifeng Chen3, Yan Liu1

1University of Southern California 2AWS AI Labs
3NEC Laboratories America 4Stellar Cyber Inc.

1{zhangyiz,yanliu.cs}@usc.edu; 2nijingchao@gmail.com;
3{weicheng,zchen,haifeng}@nec-labs.com; 4ltong@stellarcyber.ai

Abstract

Meta-learning enables quick adaptation of machine learning models to new tasks
with limited data. While tasks could come from varying distributions in reality,
most of the existing meta-learning methods consider both training and testing tasks
as from the same uni-component distribution, overlooking two critical needs of a
practical solution: (1) the various sources of tasks may compose a multi-component
mixture distribution, and (2) novel tasks may come from a distribution that is unseen
during meta-training. In this paper, we demonstrate these two challenges can be
solved jointly by modeling the density of task instances. We develop a meta-
training framework underlain by a novel Hierarchical Gaussian Mixture based Task
Generative Model (HTGM). HTGM extends the widely used empirical process
of sampling tasks to a theoretical model, which learns task embeddings, fits the
mixture distribution of tasks, and enables density-based scoring of novel tasks. The
framework is agnostic to the encoder and scales well with large backbone networks.
The model parameters are learned end-to-end by maximum likelihood estimation
via an Expectation-Maximization (EM) algorithm. Extensive experiments on
benchmark datasets indicate the effectiveness of our method for both sample
classification and novel task detection.

1 Introduction

Training models in small data regimes is of fundamental importance. It demands a model’s ability to
quickly adapt to new environments and tasks. To compensate for the lack of training data for each
task, meta-learning (a.k.a. learning to learn) has become an essential paradigm for model training by
generalizing meta-knowledge across tasks [41, 8]. While most existing meta-learning approaches
were built upon an assumption that all training/testing tasks are sampled from the same distribution, a
more realistic scenario should accommodate training tasks that lie in a mixture of distributions, and
testing tasks that may belong to or deviate from the learned distributions. For example, in recent
medical research, a global model is typically trained on the historical medical records of a certain
set of patients in the database [40, 49]. However, due to the uniqueness of individuals (e.g., gender,
age, genetics) [43], patients’ data have a substantial discrepancy, and the pre-trained model may
demonstrate significant demographic or geographical biases when testing on a new patient [35, 10].
This issue can be mitigated by personalized medicine approaches [5, 31], where each patient is
regarded as a task, and the pre-trained model is fine-tuned (i.e., personalized) on a support set of a few
records collected in a short period (e.g., a few weeks) from every patient for adaptation. In this case,
the training tasks (i.e., patients) could be sampled from a mixture of distributions (e.g., different age

∗This work was done primarily at NEC Laboratories America. ‡Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

groups), and a testing task may or may not belong to any of the observed groups. Similar examples
can be found in other applications such as the detection of fake news dissemination [7, 55, 57], where
a task is a post, whose support set consists of a few profiles of users who have disseminated it in a
short period. The training posts may be drawn from a mixture of topics, and a testing post may not
belong to any of the topics. As such, a meta-training strategy that is able to fit a model to a mixture
of task distributions and enable the identification of novel tasks during inference time is desirable for
making meta-learning a practical solution.

One way to tackle the mixture distribution of tasks is to tailor the transferable knowledge to each
task by learning a task-specific representation [33, 48, 25], but as discussed in [52], the over-
customized knowledge prevents its generalization among closely related tasks (e.g., tasks from the
same distribution). The more recent methods try to balance the generalization and customization
of the meta-knowledge by promoting local generalization either among a cluster of related tasks
[52], or within a neighborhood in a meta-knowledge graph of tasks [53]. Neither of them explicitly
learns the underlying distribution from which the tasks are generated, rendering them infeasible
for detecting novel tasks that are out-of-distribution. However, detecting novel tasks is crucial in
high-stake domains, such as medicine and finance, which provides users (e.g., physicians) confidence
on whether to trust the results of a testing task or not, and facilitates downstream decision-making.

In [21], a task-specific tuning variable was introduced to modulate the initial parameters learned by
the optimization-based meta-learning method MAML [8], so that the impacts of the meta-knowledge
on different tasks are adjusted differently, e.g., novel tasks are less influenced than the known tasks.
Whereas, this method focuses on improving model performance on different tasks (either known or
novel), but neglects the critical mission of detecting which tasks are novel. In practice, providing an
unreliable accuracy on a novel task, without differentiating it from other tasks may be meaningless.

Since the aforementioned methods cannot simultaneously handle the mixture distribution of tasks
and novel tasks, a practical solution is in demand. In this work, we consider tasks as instances, and
demonstrate the dual problem of modeling the mixture of task distributions and detecting novel tasks
are two sides of the same coin, i.e., density estimation on task instances. To this end, we propose
a Hierarchical Gaussian Mixture based Task Generative Model (HTGM) to explicitly model the
generative process of task instances. Our contributions are summarized as follows.

• We extended the widely used empirical process of generating tasks to a theoretical process specified
by a hierarchy of Gaussian mixture (GM) distributions. HTGM generates a task embedding from a
task-level GM, and uses it to define the task-conditioned mixture probabilities for a class-level GM,
from which the data samples are drawn. To allow realistic classes per task, a new Gibbs distribution
was proposed to underlie the class-level GM.

• HTGM is an encoder-agnostic framework, thus is flexible to different domains. It inherits metric-
based meta-learning methods, and only introduces a small overhead to an encoder for parameterizing
its distributions, thus is efficient for large backbone networks. The model parameters are learned
end-to-end by maximum likelihood estimation via a principled EM algorithm. The bounds of our
likelihood function were also theoretically analyzed.

• In the experiments, we evaluated HTGM on benchmark datasets regarding its scalability to large
networks, effectiveness in modeling the mixture distribution of tasks, and usefulness in identifying
novel tasks. The results demonstrate HTGM outperforms the state-of-the-art (SOTA) baselines
with significant improvements in most cases.

2 Related Work

To the best of our knowledge, this is the first work to explicitly model the generative process of task
instances from a mixture of distributions for meta-learning with novel task detection. Meta-learning
aims to handle the few-shot learning problem, which derives memory-based [30], optimization-
based [8, 26], and metric-based methods [47, 41], and often considers an artificial scenario where
training/test tasks are sampled from the same distribution. To enable more varying tasks, task-
adaptive methods facilitate the customization of meta-knowledge by learning task-specific parameters
[37, 25], temperature scaling parameters [33], and task-specific modulation on model initialization
[48, 52, 53, 21]. Among them, there are methods tackling the mixture distribution of tasks by
clustering tasks [52, 13, 14, 17], learning task similarity and graphs [58, 53], and relocating the initial
parameters for different tasks so that they use the meta-knowledge differently [21]. As discussed

2

before, none of these methods jointly handles the mixture of task distributions and the detection of
novel tasks in meta-testing stage. A more detailed discussion is in Appendix B.1.

Our model is built upon metric-based methods and learns task embeddings to model task distributions.
Achille et al. [1] proposed to learn embeddings for tasks and introduced a meta-learning method,
but not for few-shot learning. Their embeddings are from a pre-specified set of tasks (rather than
episode-wise sampling), and the meta-learning framework is for model selection. The model in [52]
has an augmented encoder for task embedding, but it does not model task generation, and is not
designed for novel task detection (an empirical comparison is in Sec. 4.1).

The conventional novelty detection aims to identify and reject samples from unseen classes [6]. It
relates to open-set recognition [46], which aims to simultaneously identify unknown samples and
classify samples from known classes. Out-of-distribution (OOD) detection [27, 28] can be seen as a
special case of novelty detection where novel samples are from other problem domains or datasets,
thus are considered to be easier to detect than novelties [6]. These methods are for large-scale training.
In contrast, we want to detect novel tasks, which is a new problem in the small data regime.

Hierarchical Gaussian Mixture (HGM) model has appeared in some traditional works [9, 32, 3, 50]
for hierarchical clustering by applying GM agglomeratively or divisively, which do not pre-train
models for meta-learning, and is remarkably different from the topic in this paper. The differences are
elaborated in Appendix B.2. Moreover, the idea of learning groups/clusters of tasks also appeared in
some multi-task learning (MTL) models. The key difference between these methods and our method
HTGM lies in the difference between MTL and meta-learning. In an MTL method, all tasks are
known a priori, i.e., the testing tasks are from the set of training tasks, and the model is inductive at
the sample-level but non-inductive at the task-level. More discussions are in Appendix B.3.

3 Hierarchical Gaussian Mixture based Task Generative Model (HTGM)

3.1 Problem Statement

Meta-learning methods typically use an episodic learning strategy, where the meta-training set Dtr

consists of a batch of episodes. Each episode samples a task τ from a distribution p(τ). Task τ
has a support set Ds

τ = {(xs
i, y

s
i)}

ns
i=1 for training, and a query set Dq

τ = {(xq
i , y

q
i)}

nq
i=1 for testing,

where ns is a small number to denote a few training samples. In particular, in a commonly used
N -way K-shot Q-query task [47], Ds

τ and Dq
τ contain N classes, with K and Q samples per class

respectively, i.e., ns = NK and nq = NQ.

Let fθ(x∗
i) → y∗i be a base model (∗ denotes s or q), and fθ(·;Ds

τ) be the adapted model on
Ds

τ . The training objective on τ is to minimize the average test error of the adapted model, i.e.,
E(x

q
i ,y

q
i)∈Dq

τ
ℓ(yq

i , fθ(x
q
i ;Ds

τ)), where ℓ(·, ·) is a loss function (e.g., cross-entropy loss), and the meta-
training process aims to find the parameter θ that minimizes this error over all episodes in Dtr. Then,
fθ is evaluated on every episode of a meta-test set Dte that samples a task from the same distribution
p(τ). Usually, p(τ) is a simple distribution [8, 21]. In this work, p(τ) is generalized to a mixture
distribution consisting of multiple components p1(τ), ..., pr(τ), and a test episode may sample a task
either in or out of any component of p(τ). As such, given the training tasks in Dtr, our goal is to
estimate the underlying density of p(τ), so that once a test task is given, we can (1) identify if it is a
novel task, and (2) adapt fθ to it with optimal accuracy. Specifically, the base model fθ can be written
as a combination of an encoder gθe

and a predictor hθp
, i.e., fθ(x∗

i) = hθp
(gθe

(x∗
i)) [44]. In this

work, we focus on a metric-based non-parametric learner, i.e., θp = ∅ (e.g., prototypical networks
[41]), not only because metric-based classifiers were confirmed as more effective than probabilistic
classifiers for novelty detection [12], but also for its better training efficiency that fits large backbone
networks than the costly nested-loop training of optimization-based methods [44].

Formally, our goal is to find the model parameter θ that maximizes the likelihood of observing a
task τ . In other words, let fθ(x∗

i) = e∗i ∈ Rd be sample embedding, we want to maximize the
likelihood of the joint distribution pθ(e

∗
i , y

∗
i) on the observed data in Dτ = {Ds

τ ,Dq
τ}. We consider

each task τ as an instance, with a representation vτ ∈ Rd in the embedding space (the method
to infer vτ is described in Sec. 3.3). To model the unobserved mixture component, we associate
every task with a latent variable zτ to indicate to which component it belongs. Suppose there are r
possible components, and let n = ns + nq be the total number of samples in Dτ , the log-likelihood

3

to maximize can be written by hierarchically factorizing it on y∗i and marginalizing out vτ and zτ .

ℓ(Dτ ;θ) =
1

n

n∑
i=1

log [pθ(e
∗
i , y

∗
i)] =

1

n

n∑
i=1

log [pθ(e
∗
i |y∗

i)p(y
∗
i)]

=
1

n

n∑
i=1

log
[
pθ(e

∗
i |y∗

i)[

∫
vτ

p(y∗
i |vτ)p(vτ)dvτ]

]
=

1

n

n∑
i=1

log

[
pθ(e

∗
i |y∗

i)
[∫

vτ

p(y∗
i |vτ)

[r∑
zτ=1

p(vτ |zτ)p(zτ)
]
dvτ

]]
(1)

where pθ(e
∗
i |y∗i) specifies the probability of sampling e∗i from the y∗i -th class, p(y∗i |vτ) is the

probability of sampling the y∗i -th class for task τ , and p(vτ |zτ) indicates the probability of generating
a task τ from the zτ -th mixture component. p(zτ) is a prior on the zτ -th component. Hence,
Eq. (1) implies a generative process of task τ : zτ → vτ → y∗i → e∗i . Next, we define each of the
aforementioned distributions and propose our HTGM method.

3.2 Model Specification and Parameterization

In Eq. (1), the class-conditional distribution pθ(e
∗
i |y∗i), the task-conditional distribution p(y∗i |vτ),

and the mixture distribution of tasks defined by {p(vτ |zτ), p(zτ)} are not specified. To make Eq. (1)
optimizable, we introduce our HTGM that models the generative process of tasks. Because Ds

τ and
Dq

τ follow the same distribution, in the following, we ignore the superscript ∗ for simplicity.

Class-Conditional Distribution. First, similar to [22, 23], we use Gaussian distribution to model the
embeddings ei’s in every class. Let µc

yi
and Σc

yi
be the mean and variance of the yi-th class, then

pθ(ei|yi) = N (ei|µc
yi
,Σc

yi
). In fact, the samples in all of the classes of task τ comprise a Gaussian

mixture distribution, where p(yi) is the mixture probability of the yi-th class. In Eq. (1), p(yi) is
factorized to be task-specific, i.e., p(yi|vτ), which resorts to another mixture distribution p(vτ) of
tasks, and establishes a structure of hierarchical mixture.

Task-Conditional Distribution. A straightforward definition of p(yi|vτ) is the density at µc
yi

in
a Gaussian distribution with vτ as the mean, where µc

yi
is the mean (or prototype) of the yi-th

class. However, doing so exposes two problems: (1) the density function of Gaussian distribution is
log-concave with one global maximum. Given the mean and variance, maximizing its log-likelihood
tends to collapse the prototypes µc

yi
’s of all classes in τ , making them indistinguishable and impairing

classification; (2) given vτ , this method tends to sample classes with small Dvτ (µ
c
yi
), where Dvτ (·)

measures the Mahalanobis distance between a data point and the Gaussian distribution centered at
vτ . However, in most of the existing works, classes are often uniformly sampled from a domain
without any prior on distances [8]. Fitting the distance function with such “uniform” classes naively
leads to an ill-posed learning problem with degenerated solutions. In light of these issues, we seek
to define p(yi|vτ) as a (parameterized) density function with at least N global optimums so that it
can distinguish the N different class prototypes of N -way tasks. The N equal (global) optimums
also allow it to fit N classes uniformly sampled from a domain. To this end, let µc

k be the surrogate
embedding of the k-th class, we propose a Gibbs distribution π(µc

k|vτ ,ω) defined by vτ and trainable
parameters ω with an energy function. Then we write p(yi = k|vτ) as

pω(yi = k|vτ) = π(µc
k|vτ ,ω) =

exp [−Eω(µ
c
k;vτ)]∫

µc
k
exp [−Eω(µ

c
k;vτ)]

(2)

where Eω(µ
c
k;vτ) = min ({||µc

k −Wjvτ ||22}Nj=1) is our energy function, and the denominator in
Eq (2) is a normalizing constant (with respect to µc

k), a.k.a. the partition function in an energy-based
model (EBM) [20]. ω = {W1, ...,WN} are trainable parameters, with Wi ∈ Rd×d. Given ω and
vτ , Eq. (2) has N global maximums at µc

k = W1vτ , ..., µc
k = WNvτ . More interpretations of the

proposed task-conditional distribution can be found in Appendix B.4.

Mixture Distribution of Tasks. In Eq. (1), the task distribution p(vτ) is factorized as a mixture
of p(vτ |zτ = 1), ..., p(vτ |zτ = r), weighted by their respective mixture probability p(zτ). Thus
we specify p(vτ) as a Gaussian mixture distribution. We introduce µt

zτ and Σt
zτ as the mean and

variance of each component, i.e., p(vτ |zτ) = N (vτ |µt
zτ ,Σ

t
zτ), and let ρ = [ρ1, ..., ρr] be the

mixture probabilities, where ρr = p(zτ = r) and ρ can be Uniform(r). Then vτ is genetrated in two

4

steps: (1) draw a latent task variable zτ from a categorical distribution on ρ, and (2) draw vτ from
N (µt

zτ ,Σ
t
zτ) [4]. As such, our HTGM generative process of an N -way K-shot Q-query task τ can

be summarized as following, and Fig. 1 illustrates the corresponding graphical model:

1. Draw zτ ∼ Categorical([ρ1, ..., ρr])

2. Draw a task embedding vτ ∼ N (µt
zτ
,Σt

zτ)

3. For k = 1, ..., N :

(a) Draw a class prototype µc
k ∼ π(µc

k|vτ ,ω) from the proposed Gibbs distribution in Eq. (2)
(b) For i = 1, ...,K +Q:

i. Set yi = k, draw a sample ei ∼ N (ei|µc
yi
,Σc

yi)

ii. Allocate (ei, yi) to the support set Ds
τ if i ≤ K; else allocate (ei, yi) to the query set Dq

τ

𝚺! 𝚺"

𝛍!

𝑧# 𝐞$

𝝆

𝐯# 𝛍%"
𝐾 + 𝑄 𝑁 𝐵

Figure 1: Graphical model of the pro-
posed generative process for B tasks
with N ways, K shots and Q queries.

To reduce complexity, we investigate the feasibility of us-
ing isotropic Gaussian with tied variance, i.e., Σc

1 = ... =
Σc

N = σ2I, for class distributions, which turned out to be
efficient in our experiments. Here, I is an identity matrix, σ
is a hyperparameter. Tied variance is also a commonly used
trick in Gaussian discriminate analysis (GDA) for genera-
tive classifiers [22, 39]. For task distributions, the variances
Σt

1, ...,Σ
t
r can be automatically inferred by our algorithm,

as elaborated in Sec. 3.3.

Finally, in Eq. (1), substituting pθ(ei|yi) = N (ei|µc
yi
, σ2I),

pω(yi|vτ) = π(µc
yi
|vτ ,ω), p(vτ |zτ) = N (vτ |µt

zτ ,Σ
t
zτ),

whose probabilities are specified and parameterized, and
letting ρ = Uniform(r) be a uniform prior, we get our
HTGM induced loss ℓHTGM(Dτ ;θ,ω). The class means µc

yi
, task means µt

zτ and variances Σt
zτ are

inferred in the E-step of our EM algorithm (the details can be found in Sec. 3.3 and A.6).

3.3 Model Optimization

It is hard to directly optimize ℓHTGM(Dτ ;θ,ω), because the exact posterior inference is intractable
(due to the integration over vτ). To solve it, we resort to variational methods, and introduce an
approximated posterior qϕ(vτ |Ds

τ), which is defined by an inference network ϕ, and implies we
want to infer vτ from its observed support set Ds

τ . The query set Dq
τ is not included because it is

unavailable during model testing. Then we propose to maximize a lower-bound of Eq. (1), which is
(the derivation can be found in Appendix A.1)

ℓHTGM-L(Dτ ;θ,ω) =
1

n

n∑
i=1

(
log pθ,ω(ei|yi) + Evτ∼qϕ(vτ |Ds

τ)[log pω(yi|vτ) + log

r∑
zτ=1

p(vτ |zτ)p(zτ)]
)

+H
(
qϕ(vτ |Ds

τ)
)

(3)
where H(qϕ(vτ |Ds

τ)) = −
∫
vτ

qϕ(vτ |Ds
τ) log qϕ(vτ |Ds

τ)dvτ is the entropy function. Similar to
VAE [16], Eq. (3) estimates the expectation (in the second term) by sampling vτ from qϕ(vτ |Ds

τ),
instead of the integration in Eq. (1), hence facilitates efficient computation. Next, we elaborate on the
inference network, the challenges of maximizing Eq. (3), and our workarounds.

Inference Network. Similar to VAE, qϕ(vτ |Ds
τ) is defined as a Gaussian distribution N (µa

zτ , σ̄
2I),

where µa
zτ is the output of the inference network, which approximates µt

zτ in Step 2 of the generative
process, and σ̄ is a hyperparameter for the corresponding variance. As illustrated by Fig. 2(a), the
inference network is built upon the base model fθ(·) with two non-parametric aggregation (i.e., mean
pooling) functions, thus ϕ = θ. The first function aggregates class-wise embeddings to prototypes
µc

yi
’s, similar to prototypical networks [41]. Differently, the second aggregates all prototypes to µa

zτ .
During model training, we used the reparameterization trick [16] to sample vτ from N (µa

zτ , σ̄
2I). It

is noteworthy that H(qϕ(vτ |Ds
τ)) in Eq. (3) becomes a constant because σ̄2 is a constant.

Challenge 1: Trivial Solution. In Eq. (3), since the first term log pθ,ω(ei|yi) = − 1
2σ2d ∥ei − µc

yi
∥22

(constants were ignored) only penalizes the distance between a sample ei and its own class mean µc
yi

(i.e., intra-class distances) without considering inter-class relationships, different class means µc
1, ...,

5

𝜋 𝝁!!
' |𝐯", 𝝎

𝑝 𝐯"|𝑧"

𝑝 𝑧"

𝐖#, … ,𝐖$

𝐯"

𝑝 𝐞%|𝑦%

𝐯"&

𝐖#, … ,𝐖$

𝐖#𝐯"&, … ,𝐖$𝐯"&

Training task embeddings Novelty?

Classification
Query set 𝓓𝝉"

𝒒

(a)

(b)

Query set {𝐱&
#}&'(
)!

Support set {𝐱&*}&'(
)"

Cl
as

s-
po

ol
in

g

𝑓!

𝑓!

{𝐞&*}&'(
)"

Task-level GMM
Class means
𝝁(- , … , 𝝁+- *

Class means

Adapted class means

Adaptation

Gibbs distribution

3

2

1{𝐞&
#}&'(
)!

𝑞. 𝐯!|𝒟!*

Support set {𝐱&*}&'(
)" {𝐞&*}&'(

)"

Data flow

Pooling

Sampling

Part of training loss

𝝁(/ , … , 𝝁,/

Model parameters 𝝓

Ta
sk

-p
oo

lin
g

Cl
as

s-
po

ol
in

g

Cl
as

s-
po

ol
in

g

Ta
sk

-p
oo

lin
g

Training process

Testing process

Class means
𝝁(- , … , 𝝁+- #

𝑞. 𝐯!"|𝒟!"*

𝝁0#
1

𝝁0#$
1

Figure 2: An illustration of HTGM on its (a) training process, and (b) testing process. In (a), 1⃝ 2⃝ 3⃝
are the three parts of the training loss in Eq. (3). In (b), the training task embeddings contain the
embeddings of all training tasks, i.e. the outputs of the task-pooling in (a).

µc
N in task τ could collide, drawing all sample embeddings to the same spot. To avoid such a trivial

solution and improve the stability of optimization, we apply negative sampling [29]

ℓneg(Dτ ; yi,θ,ω) = − logEej∼Dτ

[
exp (−

∥ej − µc
yi
∥22

2σ2d
)
]

(4)

where ej is a negative sample embedding from any class in the support set, and µc
yi

is the mean of
the positive class. In practice, we found it is beneficial to integrate ℓneg with our likelihood ℓHTGM in
Eq. (1) during training, i.e. ℓHTGM + 1

n

∑n
i=1 ℓneg. Correspondingly, from Eq. (3) we have

ℓ(Dτ ;θ,ω) = ℓHTGM-L(Dτ ;θ,ω) +
1

n

n∑
i=1

ℓneg(Dτ ; yi,θ,ω) (5)

which does not only serve as a robust training loss, but also helps solve the next challenge.

Challenge 2: The Partition Function in Eq. (2). The second term pω(yi|vτ) in Eq. (3) involves
computing the partition function in Eq. (2) (i.e., the denominator), which is intractable because of the
integration over all possible µc

k’s. To solve it, we propose an upper bound of the partition function∫
µk

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k ≤ N
√
πd (the derivation is in Appendix A.2), which is a constant

with a specific N . By replacing the partition function in Eq. (2) with N
√
πd, we got a lower bound

of pω(yi|vτ), which in turn relaxes the lower bound in Eq. (3). The following theorem (the proof is
in Appendix A.3) states that the tightness of the relaxed bound is controllable.
Theorem 3.1. Among the N global maximums W1vτ , ..., WNvτ of Eq. (2), let Whvτ and Wlvτ

(1 ≤ h, l ≤ N) be the pair with the smallest Euclidean distance Dhl, we have

lim
Dhl→∞

∫
µc

k

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k = N
√
πd (6)

This theorem indicates the partition function approximates N
√
πd when all pairs of the global

maximums are far apart. It is noteworthy that when maximizing the likelihood, we fit W1vτ , ...,
WNvτ to different class prototypes µc

1, ..., µc
N in N -way tasks. Because ℓneg in Eq. (4) tends to

maximize the distances between different prototypes through the negative samples, maximizing the
joint loss ℓ in Eq. (5) tends to separate W1vτ , ..., WNvτ , thus tighten the relaxed bound after using
N
√
πd according to Theorem 3.1. This is another benefit of negative sampling.

Optimization via Expectation-Maximization. In the third term of ℓHTGM-L in Eq. (3), we need to
estimate the mixture distribution p(zτ). Similar to optimize Gaussian mixture models, we alternately

6

infer the posterior p(zτ |vτ) (i.e., the mixture membership of vτ) and solve the model parameters
{θ,ω} through an Expectation-Maximization algorithm. In E-step, we infer p(zτ |vτ) when fixing
model parameters. In M-step, when fixing p(zτ |vτ), {θ,ω} can be efficiently solved by optimizing
Eq. (5) with stochastic gradient descent (SGD). The detailed optimization algorithm of HTGM can
be found in Appendix A.6.

3.4 Model Adaptation

Fig. 2(b) illustrates the adaptation process of HTGM. Given a new N -way task τ ′ from the meta-test
set Dte, its support set Ds

τ ′ is fed to the inference network to generate (1) class prototypes µc
1, ...,

µc
N

2 (similar to prototypical networks), and (2) distribution qϕ(vτ ′ |Ds
τ ′), from which we draw the

average task embedding vτ ′ = µa
zτ′ . Recall that the inference network is the base model fθ(·) with

class-pooling and task-pooling layers, as illustrated in Fig. 2(b), and ϕ = θ. Then vτ ′ is projected to
W1vτ ′ , ..., WNvτ ′ which represent the N optimal choices of class prototypes for task τ ′ as learned
by the Gibbs distribution in Eq. (2) from the training tasks. They are used to adapt µc

1, ..., µc
N so that

the adapted prototypes are drawn towards the closest classes from the mixture component that task
τ ′ belongs to. Specifically, the adaptation is performed by selecting the closest optimum for each
prototype µc

j (1 ≤ j ≤ N), that is

µ̄c
j = αµc

j + (1− α)Wl∗vτ ′ , where l∗ = argmin
1≤l≤N

D(µc
j ,Wlvτ ′), (7)

and D(·, ·) is the Euclidean distance, α is a hyperparameter. The following theorem confirms the
effectiveness of the this adaptation method (the proof can be found in Appendix A.4).
Theorem 3.2. The adapted prototypes µ̄c

1, ..., µ̄c
N from Eq. (7) maximizes the lower-bound ℓHTGM-L

in Eq. (3) of the likelihood in Eq. (1) when α = K
K+2σ2d .

Theorem 3.2 suggests an automatic setup of α, which can also be tuned empirically for optimal value
using validation datasets. We evaluated the empirical values of α in our experiments and discussed
their relationships with the theoretical values in Appendix A.4.

Finally, we (1) assess if τ ′ is a novelty by computing the likelihood of vτ ′ in a pre-fitted GMM on
the embeddings vτ ’s of the training tasks in Dtr, and (2) perform classification on each sample x′

i in
the query set Dq

τ ′ using the adapted prototypes by

p(y′i = j′|x′
i) =

exp (−D(fθ(x
′
i), µ̄

c
j′))∑N

j=1 exp (−D(fθ(x′
i), µ̄

c
j))

(8)

which is the posterior probability. The derivation of Eq. (8) is in Appendix A.5.

4 Experiments

In this section, we evaluate HTGM’s effectiveness on few-shot classification and novel task detection
on benchmark datasets, and compare it with SOTA methods.

Datasets. The first dataset is the Plain-Multi benchmark [52]. It includes four fine-grained image
classification datasets, i.e., CUB-200-2011 (Bird), Describable Textures Dataset (Texture), FGVC of
Aircraft (Aircraft), and FGVCx-Fungi (Fungi). In each episode, a task samples classes from one of
the four datasets, so that different tasks are from a mixture of the four domains. The second dataset is
the Art-Multi benchmark [53], whose distribution is more complex than Plain-Multi. Similar to [13],
each image in Plain-Multi was applied with two filters, i.e., blur filter and pencil filter, respectively, to
simulate a changing distribution of few-shot tasks. Afterward, together with the original four datasets,
a total of 12 datasets comprise the Art-Multi, and each task is sampled from one of them. Both
benchmarks were divided into the meta-training, meta-validation, and meta-test sets by following
their corresponding papers. Moreover, we used the Mini-ImageNet dataset [47] to evaluate the case
of uni-component distribution of tasks, which is discussed in Appendix D.6.

Baselines. We compared HTGM with the relevant SOTA methods on meta-learning, including (1)
optimization-based methods: MAML [8] and Meta-SGD [26] learn globally shared initialization

2In this section, µc
j (1 ≤ j ≤ N) is the j-th class mean of support set, its superscript s is omitted for clarity.

7

Setting Model Bird Texture Aircraft Fungi Avg.
TAML 55.77±1.43 31.78±1.30 48.56±1.37 41.00±1.50 44.28
MAML 53.94±1.45 31.66±1.31 51.37±1.38 42.12±1.36 44.77
Meta-SGD 55.58±1.43 32.38±1.32 52.99±1.36 41.74±1.34 45.67
MUMOMAML 56.82±1.49 33.81±1.36 53.14±1.39 42.22±1.40 46.50

5-way, HSML 60.98±1.50 35.01±1.36 57.38±1.40 44.02±1.39 49.35
1-shot ARML 62.33±1.47 35.65±1.40 58.56±1.41 44.82±1.38 50.34

ProtoNet 61.54±1.27 38.84±1.42 73.42±1.23 46.52±1.42 55.08
MetaOptNet 62.80±1.29 44.30±1.45 68.64±1.29 47.04±1.38 55.70
ProtoNet-Aug 65.04±1.29 44.68±1.43 70.44±1.32 49.30±1.40 57.37
NCA 62.58±1.25 40.98±1.44 68.70±1.26 46.36±1.34 54.66
FEATS 62.60±1.31 44.12±1.49 68.86±1.28 47.92±1.34 55.88
HTGM (ours) 70.12±1.28 47.76±1.49 75.52±1.24 52.06±1.41 61.37
TAML 69.50±0.75 45.11±0.69 65.92±0.74 50.99±0.87 57.88
MAML 68.52±0.79 44.56±0.68 66.18±0.71 51.85±0.85 57.78
Meta-SGD 67.87±0.74 45.49±0.68 66.84±0.70 52.51±0.81 58.18
MUMOMAML 70.49±0.76 45.89±0.69 67.31±0.68 53.96±0.82 59.41

5-way, HSML 71.68±0.73 48.08±0.69 73.49±0.68 56.32±0.80 62.39
5-shot ARML 73.34±0.70 49.67±0.67 74.88±0.64 57.55±0.82 63.86

ProtoNet 78.88±0.72 57.93±0.75 86.42±0.57 62.52±0.79 71.44
MetaOptNet 81.66±0.71 61.97±0.78 84.03±0.56 63.80±0.81 72.87
ProtoNet-Aug 80.62±0.71 58.30±0.77 87.05±0.53 63.62±0.81 72.39
NCA 79.16±0.75 58.69±0.76 85.27±0.53 61.68±0.80 71.20
FEATS 78.37±0.72 57.02±0.73 85.55±0.54 61.56±0.80 70.63
HTGM (ours) 82.27±0.74 60.67±0.78 88.48±0.52 65.70±0.79 74.28

Table 1: Results (accuracy±95% confidence) of the compared methods on Plain-Multi dataset.

among tasks. MUMOMAML [48] is a task-specific method. TAML [21] handles imbalanced
tasks. HSML [52] and ARML [53] learn locally shared initial parameters in clusters of tasks and
neighborhoods of a meta-graph of tasks, respectively; and (2) Metric-based methods: ProtoNet [41] is
the prototypical network. MetaOptNet [24] uses an SVM classifier with kernel metrics. ProtoNet-Aug
[42], FEATS [54] and NCA [19] were built upon ProtoNet by augmenting images (e.g., rotation,
jigsaw), adding prototype aggregator (e.g., Transformer), and using contrastive training loss (instead
of prototype-based loss), respectively. The detailed setup of these methods is in Appendix C.1.

Implementation. Following [44], the optimization-based baselines used the standard four-block
convolutional layers as the base learner, and the metric-based methods used ResNet-12. The output
dimension of these networks is 640 (MetaOptNet uses 16000 as in its paper). In our experiments,
we observed the optimization-based methods reported out-of-memory errors when using ResNet-
12, indicating their limitation in using large backbone networks. To test them on ResNet-12, we
followed the ANIL method [36] by pre-training ResNet-12 via ProtoNet, freezing the encoder, and
fine-tuning the last fully-connected layer. In this case, HSML and ARML cannot model the mixture
task distribution properly as they require joint training of the encoder and other layers. The details are
in Appendix D.5. For training, Adam optimizer was used. Each batch contains 4 tasks. Each model
was trained with 20000 episodes. The learning rate of the metric-based methods was 1e−3. The
learning rates for the inner- and outer-loops of the optimization-based methods were 1e−3 and 1e−4.
The weight decay was 1e−4. For HTGM, we set σ = 1.0, σ̄ = 0.1, α = 0.5 (0.9) for 1-shot (5-shot)
tasks. The number of mixture components r varies w.r.t. different datasets, and was grid-searched
within [2, 4, 8, 16, 32]. All hyperparameters were set using the meta-validation sets.

4.1 Experimental Results

Few-shot classification. Following [44], we report the mean accuracy and 95% confidence interval
of 1000 random tasks with 5-way 1-shot/5-shot, 5/25-query tests. Following [53], we report the
accuracy of each domain and the overall average accuracy for Plain-Multi, and report the accuracy of
each image filtering strategy and the overall average accuracy for Art-Multi. Table 1 and 2 summarize
the results. From the tables, we have several observations. First, metric-based methods generally
outperform optimization-based methods. This is because of the efficiency of metric-based methods,
enabling them to fit a larger backbone network, which is consistent with the results in [44]. Built
upon the metric-based method, HTGM only introduces a few distribution-related parameters and
thus has the flexibility to scale with the encoder size. Second, the baselines designed for dealing

8

Setting Model Original Blur Pencil Avg.
TAML 42.22±1.39 40.02±1.41 35.11±1.34 39.11
MAML 42.70±1.35 40.53±1.38 36.71±1.37 39.98
Meta-SGD 44.21±1.38 42.36±1.39 37.21±1.39 41.26
MUMOMAML 45.63±1.39 41.59±1.38 39.24±1.36 42.15

5-way, HSML 47.92±1.34 44.43±1.34 41.44±1.34 44.60
1-shot ARML 45.68±1.34 42.62±1.34 39.78±1.34 42.69

ProtoNet 55.23±1.31 51.70±1.42 49.22±1.44 52.05
MetaOptNet 56.10±1.35 52.33±1.43 49.08±1.45 52.50
ProtoNet-Aug 57.63±1.34 55.00±1.40 49.73±1.53 54.12
NCA 56.12±1.35 50.80±1.49 47.99±1.45 51.64
FEATS 54.33±1.33 50.90±1.48 47.96±1.48 51.07
HTGM (ours) 61.18±1.34 58.80±1.42 53.23±1.48 57.74
TAML 58.54±0.73 55.23±0.75 49.23±0.75 54.33
MAML 58.30±0.74 55.71±0.74 49.59±0.73 54.50
Meta-SGD 57.82±0.72 55.54±0.73 50.24±0.72 54.53
MUMOMAML 58.60±0.75 56.29±0.72 51.15±0.73 55.35

5-way, HSML 60.63±0.73 57.91±0.72 53.93±0.72 57.49
1-shot ARML 61.78±0.74 58.73±0.75 55.27±0.73 58.59

ProtoNet 71.34±0.73 67.28±0.75 64.32±0.76 67.65
MetaOptNet 72.33±0.72 68.90±0.78 63.89±0.71 68.37
ProtoNet-Aug 72.87±0.71 70.50±0.72 63.98±0.73 68.78
NCA 72.44±0.72 67.33±0.71 62.98±0.78 67.58
FEATS 71.99±0.71 67.54±0.72 63.09±0.76 67.54
HTGM (ours) 74.67±0.70 71.24±0.73 65.22±0.77 70.37

Table 2: Results (accuracy±95% confidence) of the compared methods on Art-Multi dataset.

with mixture distributions of tasks, i.e., HSML and ARML, outperform their counterparts without
such design, demonstrating the importance to consider mixture task distribution in practice. Finally,
HTGM outperforms the SOTA baselines in most cases by large margins, suggesting its effectiveness
in modeling the generative process of task instances.

Novel task detection. We also evaluate HTGM on the task of detecting novel N -way-K-shot tasks
(N = 5, K = 1) that are drawn out of the training task distributions. To this end, we train each
comapred model in the Original domain in Art-Multi dataset, and test the model on tasks drawn from
either Original domain (i.e., known tasks), or {Blur, Pencil} domains (i.e., novel tasks), and evaluate
if the model can tell whether a testing task is known or novel.

Model AUROC AP Max-F1
HSML 55.96 37.94 50.17
ProtoNet 65.17 41.51 56.07
MetaOptNet 72.71 63.77 58.33
NCA 66.28 51.45 52.74
ProtoNet-Aug 72.67 57.93 59.07
FEATS 59.35 42.57 49.31
HTGM w/o GMM 70.24 62.45 57.75
HTGM-Gaussian 74.06 66.18 60.62
HTGM 75.66 68.03 60.51

Table 3: Comparison between HTGM, its variants
and applicable baselines on novel task detection.

For comparison, since none of the baselines
detects novel tasks, we adapt them as follows.
For metric-based methods, since they use a
fixed encoder for all training/testing tasks, we
averaged the sample embeddings in each task
to represent the task. Then a separate GMM
model was built upon the training task embed-
dings, and its likelihood was adapted to score
the novelty of testing tasks (some details of the
setup are in Appendix C.2).

However, optimization-based models perform
gradient descent on the support set of each
task, leading to varying encoders per task. As
such, sample embeddings of different tasks
are not comparable, and we cannot obtain task
embeddings in the same way as before. Among them, only HSML has an augmented task-level
encoder for task embedding, allowing us to include it for comparison. For a fair comparison, our
HTGM also trains a GMM on its task embeddings for detecting novel tasks. Moreover, two HTGM
variants were included for ablation analysis to understand some design choices: (1) HTGM-Gaussian
replaces the Gibbs distribution in Eq. (2) with a Gaussian distribution; (2) HTGM w/o GMM removes
the task-level GM, i.e., the third term in Eq. (3). The classification results of the ablation variants are
in Appendix D.4. Following [6, 46, 56], we report Area Under ROC (AUROC), Average Precision
(AP), and Max-F1. Table 3 summarizes the results, from which we observe HTGM outperforms all

9

(a) HSML (b) MetaOptNet (c) ProtoNet-Aug (d) HTGM

Figure 3: The frequency of tasks w.r.t. the normalized likelihood for (a) HSML (b) MetaOptNet (c)
ProtoNet-Aug (d) HTGM. The x-axis ranges vary as only 95% tasks with top scores were preserved.

baselines over all evaluation metrics, indicating the superior quality of task embeddings learned by
our model. The embeddings follow the specified mixture distribution of tasks p(vτ) as described
in Sec. 3.2, which fits the mixture data well hence allowing to detect novel tasks that are close to
the boundary. Since the baselines learn embeddings without explicit constraint, they don’t fit the
post-hoc GMM well. Moreover, HTGM outperforms HTGM w/o GMM, which is even worse than
some other baselines. This further validates the necessity to introduce the regularization of task-level
mixture distribution p(vτ). Also, the drops of AUROC and AP of HTGM-Gaussian demonstrate
the importance of our unique design of the Gibbs distribution for the task-conditional distribution
in Eq. (2). Similar to [46], in Fig. 3, we visualized the normalized likelihood histogram of known
and novel tasks for HSML, MetaOptNet (the best baseline), ProtoNet-Aug (near-best baseline), and
HTGM. To better interpret the figures, we calculated the ratio between the non-overlapped area of
the two distributions and the total-area in Fig. 3 for HSML: 0.1379, MetaOpt: 0.4952, ProtoNet-
Aug: 0.4806, and HTGM: 0.5578. As can be seen, the ratio of the non-overlapped area of HTGM
is higher than other methods, which indicates the likelihoods (i.e., novelty scores) of HTGM are
more distinguishable for known and novel tasks than the baseline methods. We also analyzed the
hyperparameters σ, σ̄, and r of HTGM in Appendix D.1, D.2, and D.3.

5 Conclusion

In this paper, we proposed a novel Hierarchical Gaussian Mixture based Task Generative Model
(HTGM). HTGM models the generative process of task instances, and performs maximum likelihood
estimation to learn task embeddings, which can help adjust prototypes acquired by the feature
extractor and thus achieve better performance. Moreover, by explicitly modeling the distribution of
tasks in the embedding space, HTGM can effectively detect the tasks that are drawn from distributions
unseen during meta training. The extensive experimental results indicate the advantage of HTGM on
both few-shot classification and novel task detection.

6 Broader Impact and Limitation

Our proposed method enables better novel task detection for meta-learning. In many areas requiring
robust decisions, such as healthcare (as described in Sec. 1) and auto-driving, where the accuracy
drop and uncertainty on novel tasks is inevitable, our model can raise an alarm to users (e.g.,
doctors and human drivers) for diagnosis and decision-making. However, as a probabilistic machine
learning model, HTGM does not guarantee 100% accuracy. Also, it is noteworthy that the entropy of
π(µc

yi
|vτ ,ω) (in Eq. (2)) is proportional to the partition function (i.e. the denominator in Eq. (2)).

Thus, our approximation in Sec. 3.3 that replaces the partition function with its upper bound increases
the entropy, leading to increased noise in the inferred class prototypes. As such, in scenarios such
as serious disease treatment and auto-driving in complex environments, to avoid potential wrong
decisions from the model, human intervention is still necessary.

Acknowledgments and Disclosure of Funding

This work was primarily finished during the internship of Yizhou Zhang (the first author) at NEC
Laboratories America. Yizhou Zhang’s work after the internship was partially supported by NSF
Research Grant IIS-2226087 and the Annenberg Fellowship of the University of Southern California.
We sincerely appreciate the comments and suggestions from the anonymous reviewers.

10

References
[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji,

Charless C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-
learning. In ICCV, pages 6430–6439, 2019.

[2] Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural
networks. In ICML, volume 70, pages 136–145. PMLR, 2017.

[3] Thomas L Athey, Benjamin D Pedigo, Tingshan Liu, and Joshua T Vogelstein. Autogmm: Auto-
matic and hierarchical gaussian mixture modeling in python. arXiv preprint arXiv:1909.02688,
2019.

[4] M. Christopher Bishop. Pattern recognition and machine learning. Springer, 2006.

[5] Isaac S Chan and Geoffrey S Ginsburg. Personalized medicine: progress and promise. Annual
review of genomics and human genetics, 12:217–244, 2011.

[6] Jiacheng Cheng and Nuno Vasconcelos. Learning deep classifiers consistent with fine-grained
novelty detection. In CVPR, pages 1664–1673, 2021.

[7] Lu Cheng, Ruocheng Guo, Kai Shu, and Huan Liu. Causal understanding of fake news
dissemination on social media. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 148–157, 2021.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, pages 1126–1135. PMLR, 2017.

[9] Jacob Goldberger and Sam T Roweis. Hierarchical clustering of a mixture model. In NeurIPS,
pages 505–512, 2005.

[10] Mengdi Huai, Chenglin Miao, Qiuling Suo, Yaliang Li, Jing Gao, and Aidong Zhang. Uncorre-
lated patient similarity learning. In Proceedings of the 2018 SIAM International Conference on
Data Mining, pages 270–278. SIAM, 2018.

[11] Laurent Jacob, Jean-philippe Vert, and Francis Bach. Clustered multi-task learning: A convex
formulation. In NIPS, 2008.

[12] Minki Jeong, Seokeon Choi, and Changick Kim. Few-shot open-set recognition by transforma-
tion consistency. In CVPR, pages 12566–12575, 2021.

[13] Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning
and continual learning with online mixtures of tasks. NeurIPS, 32, 2019.

[14] Weisen Jiang, James T. Kwok, and Yu Zhang. Subspace learning for effective meta-learning.
In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages
10177–10194. PMLR, 2022.

[15] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task
feature learning. In ICML, 2011.

[16] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[17] Weihao Kong, Raghav Somani, Zhao Song, Sham M. Kakade, and Sewoong Oh. Meta-learning
for mixed linear regression. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 5394–5404. PMLR, 2020.

[18] Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap in multi-task learning.
In ICML, pages 1723–1730, 2012.

11

[19] Steinar Laenen and Luca Bertinetto. On episodes, prototypical networks, and few-shot learning.
NeurIPS, 34:24581–24592, 2021.

[20] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

[21] Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park, Eunho Yang, and
Sung Ju Hwang. Learning to balance: Bayesian meta-learning for imbalanced and out-of-
distribution tasks. arXiv preprint arXiv:1905.12917, 2019.

[22] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. NeurIPS, 31, 2018.

[23] Kimin Lee, Sukmin Yun, Kibok Lee, Honglak Lee, Bo Li, and Jinwoo Shin. Robust inference
via generative classifiers for handling noisy labels. In ICML, pages 3763–3772. PMLR, 2019.

[24] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning
with differentiable convex optimization. In CVPR, pages 10657–10665, 2019.

[25] Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric
and subspace. In ICML, pages 2927–2936. PMLR, 2018.

[26] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for
few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[27] Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In ICLR, 2018.

[28] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution
detection. pages 21464–21475, 2020.

[29] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In NeurIPS, 2013.

[30] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. In ICLR, 2018.

[31] Jingchao Ni, Wei Cheng, Zhengzhang Chen, Takayoshi Asakura, Tomoya Soma, Sho Kato,
and Haifeng Chen. Superclass-conditional gaussian mixture model for learning fine-grained
embeddings. In ICLR, 2022.

[32] Łukasz P Olech and Mariusz Paradowski. Hierarchical gaussian mixture model with objects
attached to terminal and non-terminal dendrogram nodes. In Proceedings of the 9th International
Conference on Computer Recognition Systems CORES 2015, pages 191–201. Springer, 2016.

[33] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. NeurIPS, 31, 2018.

[34] Alexandre Passos, Piyush Rai, Jacques Wainer, and Hal Daumé III. Flexible modeling of latent
task structures in multitask learning. In ICMl, pages 1283–1290, 2012.

[35] Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu. Variational recurrent
adversarial deep domain adaptation. In ICLR, 2017.

[36] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In ICLR, 2020.

[37] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. In ICLR, 2018.

[38] Ketan Rajshekhar Shahapure and Charles Nicholas. Cluster quality analysis using silhouette
score. In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics
(DSAA), pages 747–748. IEEE, 2020.

12

[39] Karishma Sharma, Yizhou Zhang, Emilio Ferrara, and Yan Liu. Identifying coordinated accounts
on social media through hidden influence and group behaviours. In SIGKDD, pages 1441–1451,
2021.

[40] Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly
sampled time series. In ICLR, 2019.

[41] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NeurIPS, 2017.

[42] Jong-Chyi Su, Subhransu Maji, and Bharath Hariharan. When does self-supervision improve
few-shot learning? In ECCV, pages 645–666. Springer, 2020.

[43] Qiuling Suo, Fenglong Ma, Ye Yuan, Mengdi Huai, Weida Zhong, Jing Gao, and Aidong
Zhang. Deep patient similarity learning for personalized healthcare. IEEE transactions on
nanobioscience, 17(3):219–227, 2018.

[44] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In ECCV, pages 266–282.
Springer, 2020.

[45] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[46] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
closed-set classifier is all you need. In ICLR, 2022.

[47] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. NIPS, 29, 2016.

[48] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Toward multimodal model-
agnostic meta-learning. arXiv preprint arXiv:1812.07172, 2018.

[49] Yinjun Wu, Jingchao Ni, Wei Cheng, Bo Zong, Dongjin Song, Zhengzhang Chen, Yanchi Liu,
Xuchao Zhang, Haifeng Chen, and Susan B Davidson. Dynamic gaussian mixture based deep
generative model for robust forecasting on sparse multivariate time series. In AAAI, volume 35,
pages 651–659, 2021.

[50] Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei Zhou, Haifeng
Chen, and Wei Cheng. Personalized federated learning under mixture of distributions. arXiv
preprint arXiv:2305.01068, 2023.

[51] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for
classification with dirichlet process priors. Journal of Machine Learning Research, 8(1), 2007.

[52] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning.
In ICML, pages 7045–7054. PMLR, 2019.

[53] Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li, and Zhenhui Li.
Automated relational meta-learning. In ICLR, 2019.

[54] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding
adaptation with set-to-set functions. In CVPR, pages 8808–8817, 2020.

[55] Yizhou Zhang, Defu Cao, and Yan Liu. Counterfactual neural temporal point process for
estimating causal influence of misinformation on social media. Advances in Neural Information
Processing Systems, 35:10643–10655, 2022.

[56] Yizhou Zhang, Karishma Sharma, and Yan Liu. Vigdet: Knowledge informed neural temporal
point process for coordination detection on social media. Advances in Neural Information
Processing Systems, 34:3218–3231, 2021.

[57] Yizhou Zhang, Karishma Sharma, and Yan Liu. Capturing cross-platform interaction for
identifying coordinated accounts of misinformation campaigns. In European Conference on
Information Retrieval, pages 694–702. Springer, 2023.

13

[58] Pan Zhou, Yingtian Zou, Xiao-Tong Yuan, Jiashi Feng, Caiming Xiong, and Steven C. H. Hoi.
Task similarity aware meta learning: theory-inspired improvement on MAML. In Cassio P.
de Campos, Marloes H. Maathuis, and Erik Quaeghebeur, editors, Proceedings of the Thirty-
Seventh Conference on Uncertainty in Artificial Intelligence, UAI 2021, Virtual Event, 27-30
July 2021, volume 161 of Proceedings of Machine Learning Research, pages 23–33. AUAI
Press, 2021.

14

A Appendix for Details of Deriving HTGM

A.1 The lower-bound of the likelihood function

In this section, we provide the details of the lower-bound in Eq. (3). By introducing the approximated
posterior qϕ(vτ |Ds

τ), the likelihood in Eq. (1) becomes (the superscript ∗ is neglected for clarity)

ℓ(Dτ ,θ) =
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

log
(∫

vτ

p(yi|vτ)p(vτ)dvτ

)

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

log
(∫

vτ

p(yi|vτ)p(vτ)
qϕ(vτ |Ds

τ)

qϕ(vτ |Ds
τ)

dvτ

)

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

log
(∫

vτ

qϕ(vτ |Ds
τ)

p(yi|vτ)p(vτ)

qϕ(vτ |Ds
τ)

dvτ

)

≥ 1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

∫
vτ

qϕ(vτ |Ds
τ)
[
log p(yi|vτ) + log p(vτ)− log qϕ(vτ |Ds

τ)
]
dvτ

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

∫
vτ

qϕ(vτ |Ds
τ)
[
log p(yi|vτ) + log p(vτ)

]
dvτ −

∫
vτ

qϕ(vτ |Ds
τ) log qϕ(vτ |Ds

τ)dvτ

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

Evτ∼qϕ(vτ |Ds
τ)

[
log p(yi|vτ) + log p(vτ)

]
+H(qϕ(vτ |Ds

τ))

=
1

n

n∑
i=1

log pθ(ei|yi) +
1

n

n∑
i=1

Evτ∼qϕ(vτ |Ds
τ)

[
log p(yi|vτ) + log

(r∑
zτ=1

p(vτ |zτ)p(zτ)
)]

+H(qϕ(vτ |Ds
τ))

(9)
where the fourth step uses Jensen’s inequality. This completes the derivation of Eq. (3).

A.2 The upper-bound of the partition function

In Sec. 3.3, we apply an upper bound on the partition function in Eq. (2) for solving the challenging
2. The derivation of the upper bound is as follows.∫

µc
yi

exp
[
− Eω(µ

c
yi
;vτ)

]
dµc

yi
=

∫
µc

yi

exp
[
−min ({||µc

yi
−Wjvτ ||22}Nj=1)

]
dµc

yi

=

∫
µc

yi

max
({

exp
[
− ||µc

yi
−Wjvτ ||22

]}N

j=1

)
dµc

yi
<

∫
µc

yi

N∑
j=1

exp
[
− ||µc

yi
−Wjvτ ||22

]
dµc

yi

=

N∑
j=1

∫
µc

yi

exp
[
− ||µc

yi
−Wjvτ ||22

]
dµc

yi
= N
√
πd

(10)

where the last equation is from the multidimensional Gaussian integral. This completes the derivation
of the upper bound of the partition function.

Note that replacing the partition function with its upper bound increases the noise in the inferred class
mean. This is because that the entropy of distribution π(µc

yi
|vτ ,ω) (µc

yi
is a class mean) in Eq. (2)

is that:

H(π) =−
∫

π(µc
yi
|vτ ,ω) log π(µc

yi
|vτ ,ω)dµc

yi

=

∫
π(µc

yi
|vτ ,ω) logZdµc

yi
+

∫
π(µc

yi
|vτ ,ω)Eω(µ

c
yi
;vτ)

]
dµc

yi

= logZ + Ēω

(11)

where Ēω is the average energy and Z is the partition function. From this formula, we see that
replacing Z with its upper bound increases the entropy of π(µc

yi
|vτ ,ω), the distribution where µc

yi

is sampled and/or inferred. Since entropy is a metric that measures the uncertainty of a random
variable, increased entropy means that our estimation to µc

k is more uncertain, or in other words, more

15

noisy. This leads to a decreasing accuracy of meta-learning since the class mean µc
yi

is an important
parameter to estimate in meta-learning. To alleviate this issue, we proposed to include an negative
sampling term as in Eq. (4) to increase the distance between different class means so that the noise
in the class mean estimation, which is brought by the upper bound approximation of Z, will not
seriously influence the accuracy.

A.3 The proof of Theorem 3.1

Proof. Let Bj denote a sphere in Rd. Its center is at Wjvτ and its radius is Dhl/2. Because Whvτ

and Wlvτ (1 ≤ h, l ≤ N) is the pair with the smallest Euclidean distance Dhl, for any pair of balls
Bj and Bm we have Bj ∩Bm is a null set (a set with 0 volume in Rd).

In other words, there is no overlap between any pair of spheres. Therefore, if we compute the integral
over the joint of all spheres, we have∫

µc
k
∈
⋃N

m=1 Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k =

N∑
m=1

∫
µc

k
∈Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k (12)

Also, because there is no overlap between any pair of spheres, for each point µc
k ∈ Bm, we have

−min
(
{||µc

k −Wjvτ ||22}Nj=1

)
= −||µc

k −Wmvτ ||22 (13)

Therefore, we have the following derivation from Eq. (12).∫
µc

k
∈
⋃N

m=1 Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k =

N∑
m=1

∫
µc

k
∈Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k

=

N∑
m=1

∫
µc

k
∈Bm

exp
[
− ||µc

k −Wmvτ ||22
]
dµc

k = N

∫
µk∈Bm

exp
[
− ||µc

k −Wmvτ ||22
]
dµc

k

(14)

Meanwhile, since
⋃N

m=1 Bm is a sub-area of the entire Rd space, we have∫
µc

k
∈
⋃N

m=1 Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k ≤
∫
µc

k

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k (15)

As Bm is a sphere, we can convert the integral into spherical coordinates. Thus we have:∫
µk∈Bm

exp
[
− ||µc

k −Wmvτ ||22
]
dµc

k =
2
√
πd

Γ(d2)

∫ Dhl/2

0

exp(−r2)rd−1dr

=

√
πd

Γ(d2)

∫ Dhl/2

0

exp(−r2)rd−2(2rdr)

=

√
πd

Γ(d2)

∫ D2
hl/4

0

exp(−t)t
d
2−1dt

=

√
πdγ(d2 , D

2
hl/4)

Γ(d2)

(16)

where γ(·, ·) is lower incomplete gamma function and Γ(·) is gamma function (Γ(x) the limitation of
γ(x, y) when y → +∞). According to the definition of lower incomplete gamma function, when
D2

hl/4 → +∞, we have

lim
Dhl→∞

∫
µc

k
∈Bm

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k =
√
πd (17)

Therefore,

lim
Dhl→∞

∫
µc

k

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k ≥ N
√
πd (18)

16

Since N
√
πd is its upper bound, based on the squeeze theorem, we have

lim
Dhl→∞

∫
µc

k

exp
[
− Eω(µ

c
k;vτ)

]
dµc

k = N
√
πd (19)

which completes the proof of Theorem 3.1. Moreover, from Equation 16, we know that the error ratio
of the approximation, denoted as AER, can be bounded:

AER =
N
√
πd −

∫
µc

k
exp

[
− Eω(µ

c
k;vτ)

]
dµc

k

N
√
πd

< 1−
γ(d2 , D

2
hl/4)

Γ(d2)
= 1−

γ(d2 , D
2
hl/4)

(d2 − 1)!
(20)

which monotonously decreases to 0 as Dhl increases to +∞

A.4 The proof of Theorem 3.2

Before starting the proof, we need to clarify the notations. When optimizing Eq. (3) in meta-training
stage, we compute the class prototypes µc

1, ...,µ
c
N with both support sample means {µc

1, ...,µ
c
N}s

and query sample means {µc
1, ...,µ

c
N}q (see Fig. 2). In Sec. 3.4, since during meta-testing stage we

have no query samples, for clarity we omitted the notations to denote the j-th class mean of support
set as µc

j . In the proof of the Theorem 3.2, we rigorously denote the support sample means of class j
as µc,s

j and the query sample means of class j as µc,q
j .

Proof. Recall the Eq. (3):

ℓHTGM-L(Dτ ;θ,ω) =
1

n

n∑
i=1

(
log pθ,ω(ei|yi) + Evτ∼qϕ(vτ |Ds

τ)[log pω(yi|vτ) + log

r∑
zτ=1

p(vτ |zτ)p(zτ)]
)

+H
(
qϕ(vτ |Ds

τ)
)

(21)
By substituting the sampled vτ into it, we can acquire:

ℓHTGM-L(Dτ ;θ,ω) =
1

n

n∑
i=1

(
log pθ,ω(ei|yi) + [log pω(yi|vτ) + log

r∑
zτ=1

p(vτ |zτ)p(zτ)]
)

+H
(
qϕ(vτ |Ds

τ)
) (22)

Note that not every term in the Eq. (22) (the above likelihood function) contains class means µc.
Only {pω(yi|vτ)} and {pθ,ω(ei|yi)} are involved with µc. Thus, optimizing µc to maximize
ℓHTGM-L(Dτ ;θ,ω) is equivalent to maximizing the following objective function L(µc):

L(µc) =

N∑
j=1

log pω(yi = j|vτ) +

n∑
i=1

log pθ,ω(ei|yi) (23)

Moreover, since every term is involved with at most one individual µc
j , we can separately optimize

each individual µc
j . We denote the embedding of the i-th sample in class j as e(j)i . The objective

function for each individual µc
j is:

L(µc
j) = log pω(yi = j|vτ) +

K∑
i=1

log pθ,ω(e
(j)
i |yi = j)

= log π(µc
j |vτ ,ω) +

K∑
i=1

logN (e
(j)
i |µc

j , σ
2I)

=− 1

2σ2d

K∑
i

||e(j)i − µc
j ||22 −min

l
||Wlvτ − µ̄c

j ||22 + constant

(24)

The maximum likelihood estimation µ̄c
j of µc

j should maximize the above objective function. It is
equivalent to find a solution set µc

j = µ̄c
j , l = l∗ that can minimize the following function:

L(µc
j , l) =

1

2σ2d

K∑
i

||e(j)i − µc
j ||22 + ||Wlvτ − µc

j ||22 (25)

17

We first compute the partial derivative of the above function with respect to µc
j :

∂L(µc
j , l)

∂µc
j

=
1

σ2d

K∑
i

(µc
j−e

(j)
i)+2(µc

j−Wlvτ) =
1

σ2d
(Kµc

j−
K∑
i

e
(j)
i)+2(µc

j−Wlvτ) (26)

On the minimum, the partial derivative should be zero. Thus, µ̄c
j =

1
K+2σ2d

∑K
i e

(j)
i + 2σ2d

K+2σ2dWlvτ

for the optimal l∗. Let us denote µc,s
j = 1

K

∑K
i e

(j)
i (the support sample mean of class j), α =

K
K+2σ2d and rl = Wlvτ − µc

j , then we have:

µ̄c
j = αµc,s

j + (1− α)Wlvτ = µc,s
j + (1− α)(Wlvτ − µc,s

j) = µc,s
j + (1− α)rl (27)

Therefore, we know that the optimal µ̄c
j , l satisfy the above equation. Because l is an index between 1

and N , there are only N solutions that satisfy the above equation. For these N solutions, we have:

L(µ̄c
j , l) =

1

2σ2d

K∑
i

||e(j)i − µ̄c
j ||22 + ||Wlvτ − µ̄c

j ||22

=
1

2σ2d

K∑
i

||e(j)i − µc,s
j − rl||22 + ||Wlvτ − µc,s

j − (1− α)rl||22

=
1

2σ2d
(K||rl||22 + rl ·

K∑
i

(e
(j)
i − µc,s

j) +

K∑
i

||e(j)i − µc,s
j ||22) + α2||rl||22

(28)

Note that µc,s
j = 1

K

∑K
i e

(j)
i . Thus

∑K
i (e

(j)
i − µc,s

j) = 0. So we have:

L(µ̄c
j , l) =

K

2σ2d
||rl||22 + α2||rl||22 + const (29)

Therefore, we can know that the optimal l that can minimize L should minimize ||rl||22, which is
l∗ = argmin1≤l≤N D(µc

j ,Wlvτ ′) using Euclidean distance D(·, ·).

However, our empirical evaluation shows that sometimes the emperically optimal value of α might
be different from theoretically optimal value K

K+2σ2d . For the 1-shot learning case, the optimal α we
acquired from grid search is around 0.5 (same as theoretically optimal value). However, in the 5-shot
learning case, the optimal α we acquired from grid search is around 0.9, slightly larger than 0.84
(K
K+2σ2d). We suggests that it might be because during meta-training we replace the likelihood with

its evidence lower bound and approximate the partition function with its upper bound, introducing
noise into the generative model. Thus, we need to scale its weight down. Therefore, we propose to
replace K

K+2σ2d with a hyperparameter α and fineunte it on validation set.

A.5 Derivation of Eq. (8)

We first compute p(y′ = j′|x′) i.e. the posterior distribution of the query sample’s label y′ conditioned
on the sample. Then we select the label with the highest posterior probability. Utilizing the estimation
of class means, we have the label conditional distribution:

p(y′i = j′|x′
i) =

p(y′i = j′,x′
i)∑N

j=1 p(y
′
i = j,x′

i)
=

p(x′
i|y′i = j′)p(y′i = j′)∑N

j=1 p(x
′
i|y′i = j)p(y′i = j)

(30)

Note that during the meta-testing stage, we should equally treat each class i.e., assume that the prior
probability of each class should be same, i.e. p(y′i = 1) = ... = p(y′i = N). Thus we have:

p(y′i = j′|x′
i) =

p(x′
i|y′i = j′)∑N

j=1 p(x
′
i|y′i = j)

=
exp (−D(fθ(x

′
i), µ̄

c
j′))∑N

j=1 exp (−D(fθ(x′
i), µ̄

c
j))

(31)

A.6 The training algorithm of HTGM

The training algorithm of HTGM is summarized in Algorithm 1.

18

Algorithm 1: Hierarchical Gaussian Mixture based Task Generative Model (HTGM)
Input: encoder fθ , training dataset Dtr, hyperparameters r, σ, σ̄
Output: model parameters {θ, ω}

1 Pre-train the encoder fθ via ProtoNet with augmentations.
2 Pre-train the energy function in Eq. (2) by maximizing 1

n

∑n
i=1 log pθ,ω(ei|yi) + log pω(yi|vτ)

3 for i← 1 to MaxEpoch do
/* E-step */

4 V = ∅
5 for {Ds

τ = {(xs
i , y

s
i)}

ns
i=1,D

q
τ = {(xq

i , y
q
i)}

nq
i=1} in Dataloader(Dtr) do

/* load a task episode */

6 {es
i}

ns
i=1 = {fθ(xs

i)}
ns
i=1 ; // embeddings of the support set

7 µa
zτ

= Task-Pooling(Class-Pooling({(es
i , y

s
i)}

ns
i=1)) ; // the mean of qϕ(vτ |Ds

τ)

8 Sample a task embedding vτ from qϕ(vτ |Ds
τ) = N (µa

zτ
, σ̄2I)

9 V = V ∪ {vτ}
10 end
11 {zτ}|V|

τ=1, {µt
1, ...,µ

t
r,Σ

t
1, ...,Σ

t
r} = GMM(V). ; // fit a GMM to V, where {zτ}|V|

τ=1

represents the labeling of the vτ’s in V
/* M-step */

12 for {Ds
τ = {(xs

i , y
s
i)}

ns
i=1,D

q
τ = {(xq

i , y
q
i)}

nq
i=1} in Dataloader(Dtr) do

/* load a task episode */

13 {es
i}

ns
i=1 = {fθ(xs

i)}
ns
i=1 ; // forward pass

14 {eq
i}

nq
i=1 = {fθ(xq

i)}
nq
i=1 ; // forward pass

15 {µc
1, ...,µ

c
N}s = Class-Pooling({(es

i , y
s
i)}

ns
i=1)

16 µa
zτ

= Task-Pooling({µc
1, ...,µ

c
N}s) ; // the mean of qϕ(vτ |Ds

τ)

17 Sample a task embedding vτ from qϕ(vτ |Ds
τ) = N (µa

zτ
, σ̄2I)

18 for j = 1, ..., N do
19 µ̄c

j = αµc
j + (1− α)Wl∗vτ ′ where l∗ = argmin1≤l≤N D(µc

j ,Wlvτ ′)

20 end
21 Calculate ℓ({eq

i}
nq
i=1,V, {µ̄

c
j}Nj=1, {µt

1, ...,µ
t
r,Σ

t
1, ...,Σ

t
r}, σ,ω) ; // calculate the loss

in Eq. (5) using Eq. (3) and Eq. (4)
22 θ,ω = SGD(ℓ,θ,ω) ; // update model parameters

23 end
24 end

B Appendix for Further Discussion

B.1 Discussion about the novel task discussion and meta-learning

As we discussed in Sec. 2, to the best of our knowledge, our proposed method HTGM is the first
work that jointly considers the task mixture distribution and novel task detection in meta-testing
stage. There are some works considering how to identify novel task clusters in meta-training stage
based on task embedding [52] or task likelihood [13]. However, they have their own respective
drawbacks when handling novel task detection in meta-testing stage. For task-embedding-based
method like [52], it does not explicitly model the task distribution. Instead, it considers how to
model the task membership of the learnt clusters. As a result, they can only identify the outlying
task clusters rather than individual novel tasks. However, in meta-testing stage, we expect the model
to identify each individual novel task and raise alerts. The task-likelihood-based method DPMM
[13] can handle individual novel tasks. However, it is hard for them to simultaneously handle quick
detection and adaptation. This is because its likelihood was built on the entire model parameters,
leading to model-dependent and time consuming computation. It is not a big issue for meta-training,
but will serious limit its application to streaming tasks in meta-testing (e.g., in auto-driving domain)
where efficiency is critical for timely alarms of novel tasks.

19

B.2 Discussion about the relationship between HTGM and HGM model

To the best of our knowledge, the Hierarchical Gaussian Mixture (HGM) model has appeared
in the traditional works [9, 32, 3, 50] for hierarchical clustering by applying Gaussian Mixture
model agglomeratively or divisively on the input samples. They are unsupervised methods that
infer clusters of samples, but do not pre-train embedding models (or parameter initializations) that
could be fine-tuned for the adaptation to new tasks in meta-learning. Therefore, these methods are
remarkably different from meta-learning methods, and we think it is a non-trivial problem to adapt
the concept of HGM to solve the meta-learning problem. To this end, we need to (1) identify the
motivation; and (2) solve the new technical challenges. For (1), the hierarchical structure of mixture
distributions naturally appears when we want to model the generative process of tasks from a mixture
of distributions, where each task contains another mixture distribution of classes (as suggested by
Eq. (1)). In other words, the motivating point of our method is more on meta-learning than HGM.
However, drawing such a connection between meta-learning and HGM is a novel contribution. For (2),
our method is different from traditional HGM in (a) its generative process of tasks (Sec. 3.2), which
is a theoretical extension of the widely used empirical process of generating tasks in meta-learning;
(b) its Gibbs-style task-conditional distribution (Eq. (2)) for fitting uniformly sampled classes; (c)
the metric-based end-to-end meta-learning framework (Fig. 2) (note the traditional HGM is not for
learning embeddings); (d) the non-trivial derivation of the optimization algorithm in Sect. 3.3 and
Alg. 1; and (e) the novel model adaptation process in Sec. 3.4. Solving the technical challenges in
the new generative model is another novel contribution of the proposed method.

B.3 Discussion about the related multi-task learning methods

The modeling of the clustering/grouping structure of tasks or the mixture of distributions of tasks
has been studied in multi-tasking learning (MTL). In [51, 11], tasks are assumed to have a clustering
structure, and the model parameters of the tasks in the same cluster are drawn to each other via
optimization on their L2 distances. In [15], a subspace based regularization framework was proposed
for grouping task-specific model parameters, where the tasks in the same group are assumed to lie in
the same low dimensional subspace for parameter sharing. The method in [18] also uses the subspace
based sharing of task parameters, but allows two tasks from different groups to overlap by having
one or more bases in common. The method in [34] introduces a generative model for task-specific
model parameters that encourages parameter sharing by modeling the latent mixture distribution of
the parameters via the Dirichlet process and Beta process.

The key difference between these methods and our method HTGM lies in the difference between
MTL and meta-learning. In an MTL method, all tasks are known a priori, i.e., the testing tasks are
from the set of training tasks, and the model is non-inductive at the task-level (but it is inductive at
the sample-level). In HTGM, testing tasks can be disjoint from the set of training tasks, thus the
model is inductive at the task-level. In particular, we aim to allow testing tasks that are not from the
distribution of the training tasks by enabling the detection of novel tasks, which is an extension of
the task-level inductive model. The second difference lies in the generative process. The method
in [34] models the generative process of the task-specific model parameters (e.g., the weights in a
regressor). In contrast, HTGM models the generative process of each task by generating the classes
in it, and the samples in the classes hierarchically, i.e., the (x, y)’s (in Eq. (1) and Sec. 3.2). In this
process, we allow our model to fit uniformly sampled classes given a task (without specifying a prior
on the distance function on classes) by the proposed Gibbs distribution in Eq. (2). Other remarkable
differences to the aforementioned MTL methods include the inference network (Fig. 2(b)), which
allows the inductive inference on task embeddings and class prototypes; the optimization algorithm
(Sec. 3.3) to our specific loss function in Eq. (3), which is from the likelihood in Eq. (1); and the
model adaptation algorithm (Sec. 3.4) for performing predictions in a testing task, and detecting
novel tasks. As such, the MTL methods can not be trivially applied to solve our problem.

B.4 Further interpretation of the task-conditional distribution

The task-conditional class distribution pω(yi = k|vτ) in Eq. (2) is defined through an energy function
Eω(µ

c
k;vτ) = min ({||µc

k −Wjvτ ||22}Nj=1) with trainable parameters ω = {W1, ...,WN}, for
allowing uniformly sampled classes per task. The conditional distribution p(yi|vτ) represents how
classes distribute for a given task τ . The reason for its definition in Eq. (2) is as follows. If it is a
Gaussian distribution with vτ (i.e., task embedding) as the mean, p(yi = k|vτ) can be interpreted as

20

the density at the representation of the k-th class in this Gaussian distribution, i.e., the density at µk,
which is the mean/surrogate embedding of the k-th class. One problem of this Gaussian p(yi|vτ) is
that different classes, i.e., different µyi

’s, are not uniformly distributed, contradicting the practice
that given a dataset (e.g., images), classes are often uniformly sampled for constituting a task in the
empirical studies. Using a uniformly sampled set of classes to fit the Gaussian distribution p(yi|vτ)
will lead to an ill-posed learning problem, as described in Sec. 3.2. To solve it, we introduced
ω = {W1, ...,WN} in the energy function Eω(µ

c
k;vτ) in Eq. (2). Wj ∈ Rd×d (1 ≤ j ≤ N)

can be interpreted as projecting vτ to the j-th space spanned by the basis (i.e., columns) of Wj .
There are N different spaces for j = 1, ..., N . Thus, the N projected task means W1vτ , ...,WNvτ

are in N different spaces. Fitting the energy function Eω(µ
c
k;vτ) to N uniformly sampled classes

µc
1, ...,µ

c
N , which tend to be far from each other because they are uniformly random, tends to learn

W1, ...,WN that project vτ to N far apart spaces that fit each of the µc
1, ...,µ

c
N by closeness, due to

the min-pooling operation. This mitigates the aforementioned ill-posed learning problem.

C Appendix for Implementation Details

C.1 The setup of the compared models

Encoder of Metric-based Meta-Learning. For fairness, for all metric-based methods, including
ProtoNet [41], MetaOptNet [24], ProtoNet-Aug [42], FEATS [54] and NCA [19], following [44, 24],
we apply ResNet-12 as the encoder. ResNet-12 has 4 residual blocks, each has 3 convolutional layers
with a kernel size of 3 × 3. ResNet-12 uses dropblock as a regularizer, and its number of filters
is (60, 160, 320, 640). For MetaOptNet, following its paper [24], we flattened the output of the
last convolutional layer to acquire a 16000-dimensional feature as the image embedding. For other
baselines, following [44], we used a global average-pooling layer on the top of the last residual block
to acquire a 640-dimensional feature as the image embedding.

Further Details. Following [41], ProtoNet, ProtoNet-Aug, and NCA use Adam optimizer with
β1 = 0.9 and β2 = 0.99. We did grid-search for the initial learning rate of the Adam within
{1e−2, 1e−3, 1e−4}, where 1e−3 was selected, which is the same as the official implementation
provided by the authors. For FEATS, we chose transformer as the set-to-set function based on the
results reported by [54]. When pre-training the encoder in FEATS, following its paper [54], we
applied the same setting as ProtoNet, which is to use Adam optimizer with an initial learning rate
of 1e−3, β1 = 0.9 and β2 = 0.99. When training its aggregation function, we grid-searched the
initial learning rate in {1e−4, 5e−4, 1e−5} since a larger learning rate leads to invalid results on our
datasets. The optimal choice is 1e−4. For MetaOptNet, following its paper [24], we used SGD with
Nesterov momentum of 0.9, an initial learning rate of 0.1 and a scheduler to optimize it, and applied
the quadratic programming solver OptNet [2] for the SVM solution in it.

C.2 The details of the setup for novel task detection

In the experiments on novel task detection in Sec. 4.1, the number of in-distribution tasks (from the
Original domain) in the test set is 4000 (1000 per task cluster) and the number of novel tasks (from
the Blur and Pencil domains) in the test set is 8000 (4000 for the Blur and 4000 for the Pencil).

D Appendix for Experimental Results

D.1 Analysis of σ

Setting of 2σ2d Bird Texture Aircraft Fungi
0.1 69.33 46.92 75.20 50.78
0.5 70.00 47.98 75.38 52.38

1.0 (Ours) 70.12 47.76 75.52 52.06
10.0 69.4 47.28 75.32 51.5

Table 4: Analysis of different σ

21

Tabel 4 reports the effect of different σ on the classification performance (5-way-1-shot classification
on Multi-Plain dataset). As shown in the table, although the too low or too high setting of this
hyper-parameter will hurt the performance, in general the model is robust toward the setting of σ.

D.2 Analysis of σ̄

Setting of σ̄ Bird Texture Aircraft Fungi
0.05 69.78 48.36 74.36 51.34

0.1(Ours) 70.12 47.76 75.52 52.06
0.2 70.02 47.50 75.30 51.74
0.5 69.02 46.66 74.46 51.00

Table 5: Analysis of different σ̄

Tabel 5 summarizes how different settings of σ̄ influence the classification performance (5-way-1-shot
classification on Plain-Multi dataset). In general, different settings of σ̄ will influence the model
performance at a marginal level, indicating our model’s robustness toward this hyper-parameter.

D.3 Impact of GMM component number

Number of components r 2 4 8 16 32
Silhouette score 47.70 57.61 12.76 7.81 6.19
Table 6: Analysis on the number of mixture components

Different choices of the number of mixture components does not significantly influence the model
classification performance. However, the clustering quality may vary due to the different numbers of
components. Here, we report the Silhouette score [38, 39] on Plain-Multi dataset w.r.t. the number
in Table 6. From Table 6, we can see that selecting a component number close to the ground-truth
component number of the distribution can benefit the clustering quality.

D.4 Classification performance of the ablation variants

Ablation Variants Bird Texture Aircraft Fungi
HTGM w/o GMM 68.86 48.00 75.74 52.28
HTGM-Gaussian 69.52 47.3 75.38 51.34

HTGM 70.12 47.76 75.52 52.06
Table 7: Ablation study of different variants of our proposed method.

We summarize the classification performance of the two Ablation Variants HTGM w/o GMM and
HTGM-Gaussian in Table 7. As we can see, our unique designs improve the novel task detection
performance without significantly decreasing the classification performance.

D.5 Ablation analysis of optimization-based methods

Setting Model Bird Texture Aircraft Fungi Average
ANIL-MAML 62.64±0.90 43.86±0.78 70.03±0.85 48.34±0.89 56.22

5-way-1-shot ANIL-HSML 64.33±0.87 43.77±0.79 69.71±0.84 47.75±0.89 56.39
ANIL-ARML 65.98±0.87 43.57±0.78 70.28±0.84 48.48±0.92 57.08
HTGM (ours) 70.12±1.28 47.76±1.49 75.52±1.24 52.06±1.41 61.37
ANIL-MAML 74.38±0.73 55.36±0.74 79.78±0.63 59.57±0.79 67.27

5-way-5-shot ANIL-HSML 78.18±0.71 57.70±0.75 81.32±0.62 59.83±0.81 69.26
ANIL-ARML 78.79±0.71 57.61±0.73 81.86±0.59 60.19±0.81 69.61
HTGM (ours) 82.27±0.74 60.67±0.78 88.48±0.52 65.70±0.79 74.28

Table 8: More results (accuracy±95% confidence) of the optimization-based methods.

22

We selected the two best performed optimization-based baselines HSML and ARML, and the widely
used method MAML for this ablation analysis. Table 8 summarizes the performance of MAML,
HSML and ARML trained in ANIL method [36], i.e., we pre-trained the ResNet-12 by ProtoNet,
froze the encoder, and fine-tuned the last fully-connected layers using MAML, HSML and ARML
on Plain-Multi dataset. From Table 8, the performance of ANIL-MAML is better than MAML in
Table 1, similar to the observation in [36], indicating the effectiveness of ANIL method. However,
ANIL-HSML and ANIL-ARML perform similarly to ANIL-MAML, losing their superiority of
modeling the mixture distribution of tasks achieved when implemented without ANIL as in Table
1 (up to 5.6% average improvement). This is because the clustering layers in HSML and the graph
layers in ARML both affect the embeddings learned through backpropagation, i.e., they were designed
for joint training with the encoder. When the encoder is frozen, they cannot work properly. For this
reason, to be consistent with the existing research [52, 53] that demonstrated the difference between
HSML/ARML and MAML, we used their original designs in Sec. 4. Meanwhile, we observed
the proposed HTGM outperforms MAML, HSML, and ARML trained in ANIL method, this is
because MAML cannot model the mixture distribution of tasks, while HSML and ARML cannot
work properly when trained in ANIL method.

D.6 More results on the Mini-ImageNet dataset

Model 5-way-1-shot 5-way-5-shot
ProtoNet-Aug 59.40±0.93 74.68±0.45
HTGM (ours) 61.80±0.95 74.55±0.45

Table 9: Comparison of the proposed method and ProtoNet-Aug on the Mini-ImageNet dataset.

In the case when the task distribution is not a mixture, our model would degenerate to and perform
similarly to the general metric-based meta-learning methods, e.g., ProtoNet, which only considers a
uni-component distribution. To confirm this, we added an experiment that compares our model with
ProtoNet-Aug on Mini-ImageNet [47], which does not have the same explicit mixture distributions
as in the Plain-Multi and Art-Multi datasets in Section 4. The results are summarized in Table
9. From the table, we observe our method performs comparably to ProtoNet, which validates the
aforementioned guess. Meanwhile, together with the results in Table 1 and Table 2, the proposed
method could be considered as a generalization of the metric-based methods to the mixture of task
distributions.

D.7 Task Embedding Visualization.

Figure 4: Clusters of task embeddings
on Plain-Multi.

We provide visualizations of the task embeddings learnt by
HTGM. Fig 4 is the visualization of the task embeddings
for Few-Shot Classification on Plain-Multi dataset (Sec.
4.1) via t-SNE [45]. Every yellow point corresponds to a
task sampled from Aircraft. Every blue point corresponds
to a task sampled from Texture. Every red point corre-
sponds to a task sampled from Fungi. Every green point
corresponds to a task sampled from Bird. As we can see,
in general, different classes of tasks are well clustered in
the task embedding space, indicating that HTGM learnt
task embeddings that capture the difference of tasks from
different groups.

D.8 Computational Cost

We report the cost of ProtoNet-Aug, NCA, FEATS and our model because they use the same encoder
architecture. We evaluated and trained all of the models on RTX 6000 GPU with 24 GB memory.

Training Time: According to the training logs, the training of the ProtoNet-Aug took 10 hours, the
training of NCA took 6.5 hours, the training of FEATS took 10.5 hours, and the training of the

23

proposed model HTGM took 13 hours. Please note that our algorithm and FEATS require pre-training
the encoder with ProtoNet-Aug. The 10.5 and 13 hours include the 10 hours pre-training phase.
The main cost of our model is not from the energy function, because we have reduced its partition
function to a constant using Eq. (6) in Theorem 3.1, whose training cost is negligible.

The higher cost is because (1) our model needs to jointly learn a GMM model in every EM step
and (2) jointly learning the generative model and classification model takes more learning steps to
converge. Given the pre-trained ProtoNet-Aug encoder, the FEATS took about 3000 steps to converge,
the proposed model took about 10000 steps to converge. In other words, the EM training algorithm
takes more computational overhead. However, the advantage comes with the training cost is the better
classification and novel task detection performance.

Test Time: Because we approximated the partition function of the energy function with a constant
upper bound, we almost added zero computational cost to the model inference. The test time of NCA,
FEATS, ProtoNet, and our model are all around 85-95 seconds for 1000 tasks.

24

	Introduction
	Related Work
	Hierarchical Gaussian Mixture based Task Generative Model (HTGM)
	Problem Statement
	Model Specification and Parameterization
	Model Optimization
	Model Adaptation

	Experiments
	Experimental Results

	Conclusion
	Broader Impact and Limitation
	Appendix for Details of Deriving HTGM
	The lower-bound of the likelihood function
	The upper-bound of the partition function
	The proof of Theorem 3.1
	The proof of Theorem 3.2
	Derivation of Eq. (8)
	The training algorithm of HTGM

	Appendix for Further Discussion
	Discussion about the novel task discussion and meta-learning
	Discussion about the relationship between HTGM and HGM model
	Discussion about the related multi-task learning methods
	Further interpretation of the task-conditional distribution

	Appendix for Implementation Details
	The setup of the compared models
	The details of the setup for novel task detection

	Appendix for Experimental Results
	Analysis of
	Analysis of
	Impact of GMM component number
	Classification performance of the ablation variants
	Ablation analysis of optimization-based methods
	More results on the Mini-ImageNet dataset
	Task Embedding Visualization.
	Computational Cost

