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ABSTRACT
Promising progress has been made toward learning efficient time se-

ries representations in recent years, but the learned representations

often lack interpretability and do not encode semantic meanings by

the complex interactions of many latent factors. Learning represen-

tations that disentangle these latent factors can bring semantic-rich

representations of time series and further enhance interpretability.

However, directly adopting the sequential models, such as Long

Short-Term Memory Variational AutoEncoder (LSTM-VAE), would

encounter a Kullback–Leibler (KL) vanishing problem: the LSTM

decoder often generates sequential data without efficiently using

latent representations, and the latent spaces sometimes could even

be independent of the observation space. And traditional disentan-

glement methods may intensify the trend of KL vanishing along

with the disentanglement process, because they tend to penalize the

mutual information between the latent space and the observations.

In this paper, we propose Disentangle Time-Series (DTS), a novel
disentanglement enhancement framework for time series data. Our

framework achieves multi-level disentanglement by covering both

individual latent factors and group semantic segments. We pro-

pose augmenting the original VAE objective by decomposing the

evidence lower-bound and extracting evidence linking factorial

representations to disentanglement. Additionally, we introduce a

mutual information maximization term between the observation

space to the latent space to alleviate the KL vanishing problemwhile

preserving the disentanglement property. Experimental results on

five real-world IoT datasets demonstrate that the representations

learned by DTS achieve superior performance in various tasks with

better interpretability.
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1 INTRODUCTION
Unsupervised representation learning, as a fundamental task of time

series analysis, aims to extract low-dimensional representations

from complex raw time series without human supervision. Recently,

deep generative models have shown great representation ability

in modeling complex underlying distributions of time series data.

The most representative ones include Long Short-Term Memory

Variational AutoEncoder (LSTM-VAE) and its variants [19–21, 27].

While these representation learning techniques can achieve good

performance in many downstream applications, the learned rep-

resentations often lack the interpretability to expose tangible se-

mantic meanings. In many cases, especially in high-stakes domains,

an interpretable representation is critical for diagnosis or decision-

making. For example, learning interpretable and semantic-rich rep-

resentations can help decompose the electrocardiogram (ECG) into

cardiac cycles with recognizable phases as independent factors.

Furthermore, extracting and analyzing common sequential pat-

terns (𝑖 .𝑒 ., normal sinus rhythms) from massive ECG records can

assist clinicians with better understanding irregular symptoms. In

contrast, diagnostic processes without transparency or accurate

explanations may lead to suboptimal or even risky treatments.

To extract semantically meaningful representations, researchers

in computer vision have turned to disentanglement learning, which

decomposes the representations into subspaces and encodes them

as separate dimensions [13]. A disentangled representation can be

defined as one where latent units are sensitive to changes in a single

latent factor while being relatively invariant to changes in other

factors. Different dimensions in the latent space are probabilisti-

cally independent. Fig. 1 (a) shows a semantic factor controls the

eyeglasses in the image. Learning factors of variations in the images

reveals semantic meanings in the underlying distribution [29].

Motivated by the success of disentanglement in the image do-

main, in this work, we explore disentangled representations for
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(a) Semantic factors for images, where a semantic factor (pink) con-
trols the eye glasses of a facial image [29].

Semantic
Factors

Semantic
Factors

(b) Semantic factors of time series, where a semantic factor (green)
controls the sequential trend. Inverted (first), flattened (second), or
sharp (third) T waves could provide insights into the abnormalities of
the ventricular re-polarization and de-polarization comparing with
the normal case (last) [25].

Figure 1: Two traversal plot examples of disentanglement.

time series. Fig. 1 (b) shows an example of how the learned semantic

factor can control the shape of ECG time series. Medically, inverted,

biphasic, or flattened T wave, as one sequential pattern, could pro-

vide insights into the abnormalities of the ventricular repolarization

ventricular depolarisation (in green) [25]. In addition, the QT inter-

val, as a group of individual patterns from the beginning of the Q

wave to the end of the T wave, could represent the physiologic re-

actions for the ventricles of the heart to de-polarize and re-polarize.

Thus, there exists a vital need for methods that can enhance the

interpretability of time series representations from the perspectives

of both single factor and group-level factor disentanglement.

However, disentangled representation learning on time series

presents several unique challenges. Firstly, temporal correlations
makes the latent representations hard to interpret. Time series data

usually contain temporal correlations, which cannot be directly

captured and interpreted by traditional image-focused disentangle-

ment methods [8, 28, 29]. While traditional sequential models, like

LSTM or LSTM-VAE [11, 27], could be used to model the temporal

correlations, they neither provide interpretable predictions, as is

often criticized, nor have a disentanglement mechanism. Secondly,

naively applying disentanglement methods to sequential models may
intensify the Kullback–Leibler (KL) vanishing problem. When com-

poundedwith strong autoregressive decoders, VAE based sequential

models often converge to a degenerated local optimum known as

“KL vanishing”, which causes the latent variables to be relatively

independent of the observations [32]. Unfortunately, traditional

disentanglement methods may intensify the trend of KL vanishing

along with the disentanglement process, because they tend to penal-

ize the mutual information between the latent space and the obser-

vations (detailed analysis of this problem is provided in Section 2.2

and Section 2.3). Thirdly, interpretable semantic concepts often rely
on multiple factors instead of individuals. A human-understandable

sequential pattern, called a semantic component, is usually corre-

lated with multiple factors. It is hard to interpret time series with a

single latent factor.

To address these challenges, we propose Disentangle Time-

Series (DTS) for learning semantically interpretable time series

representations. To the best of our knowledge, DTS is the first at-
tempt to incorporate disentanglement strategies for time series. In

particular, we design a multi-level disentanglement strategy that

accounts for both individual factors and group-level segments, to

generate hierarchical semantic concepts as the interpretable and dis-

entangled representations of time series. To disentangle individual

latent factors, DTS adjusts the training objective from two aspects:

1) augmenting the original training objective by decomposing the

evidence lower bound, which aims to preserve the disentanglement

property and alleviate the KL vanishing problem simultaneously;

2) introducing a mutual information maximization term, which

aims to preserve the correlation between the latent variables and

the original time series. In addition, we theoretically prove that

the new objective can balance the preference between correct in-

ference and fitting data distribution. To disentangle group-level

semantic segments, DTS learns to decompose time series into inde-

pendent semantic segments via applying gradient reversal layers

on irrelevant tasks. Each of the semantic segments contains batches

of independent latent variables. The segments with target task-

relevant information are utilized to eliminate negative transfer

from incidentally encoded irrelevant information.

The contributions of this work are summarized as follows:

• We introduce a novel and challenging real-world problem (𝑖 .𝑒 .,

disentangling time series) and propose DTS to incorporate disen-

tanglement strategies for time series representation learning.

• We propose a multi-level time series disentanglement strategy,

covering both individual latent factor and group-level seman-

tic segments, to generate hierarchical semantic concepts as the

interpretable and disentangled representation of time series.

• We introduce an evidence lower bound decomposition strategy

that could balance the preference between correct inference and

data distribution fitting. We theoretically show how to preserve

the correlation between the latent space and inputs and factorize

the latent space for disentanglement simultaneously.

• The proposed DTS framework is extensively evaluated on on five

real-world IoT datasets. The results show that DTS provides more

meaningful disentangled representations of time-series, and is

quantitatively effective for downstream tasks.

2 METHODOLOGY
In this section, we propose DTS, a multi-level disentanglement ap-

proach (see Fig. 2) to enhance time series representation learning.

The key idea of DTS is to factorize the latent space as independent

semantic concepts. DTS mainly consists of Individual Factor Disen-
tanglement, and Group Segment Disentanglement. The Individual
Factor Disentanglement module decomposes the latent variables

into independent factors that contain different semantic meanings,

while the Group Segment Disentanglement module aims to enrich

the group-level semantic meaning of sequential data by grouping

them into a batch of segments. To achieve the multi-level disen-

tanglement, a novel evidence lower bound (ELBO) decomposition

strategy is proposed to find evidence linking factorial representa-

tions to disentanglement without sacrificing the correct inference.
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Figure 2: DTS consists of two components: (i) individual factor
disentanglement: to learn semantic factors like 𝑧0 (shown as
pink) to control the sequential pattern of the time series, e.g.,
the time series moves down when adjusting 𝑧0; and (ii) group
segment disentanglement: to learn more complex semantic
patterns𝑔𝑚, 𝑔𝑛 (illustrated as the common and discriminative
patterns). A, B denote two time series.

Notations: Let x = [𝑥1, 𝑥2, ..., 𝑥𝑇 ] ∈ R𝑇 be a time series of length𝑇 ,

which is associated with a latent representation z = [𝑧1, 𝑧2, ..., 𝑧𝑛] ∈
R𝑛 . Each entry 𝑧𝑖 is a value of a latent variable, which is a disen-

tangled factor that describes a particular sequential pattern of x.
The set 𝑍𝑠 = {𝑧1, 𝑧2, ..., 𝑧𝑛} contains all of the factors. As some

complex patterns may only be described by a sub-group of factors

from 𝑍𝑠 , we use 𝑍𝑔 = {𝑔1, ..., 𝑔𝑚} to denote a division of 𝑍𝑠 , where

𝑔𝑖 includes several latent variables from 𝑍𝑠 , i.e., 𝑔𝑖 ⊂ 𝑍𝑠 , and the

sub-groups are disjoint, i.e., 𝑔𝑖 ∩ 𝑔 𝑗 = ∅, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑚, and𝑚 ≤ 𝑛.

Specifically, a disentangled factor 𝑧𝑖 should be sensitive to the

changes in a single semantic concept that governs the generation

of the time series, while being invariant to the changes caused

by other latent variables in 𝑍𝑠 [6]. For example, in Fig. 1(b), one

latent variable controls the shape of the time series in the green

interval but will not cause the changes of other intervals (which

could be controlled by other latent variables). We denote such

disentanglement between factors by 𝑧𝑖 ⫫ 𝑧 𝑗 . Similarly, two groups

of factors are disentangled, i.e., 𝑔𝑖 ⫫ 𝑔 𝑗 , if they are invariant to the

changes of the other’s corresponding sequential patterns.

Problem: Given a training dataset D = {x}, our goal is to solve a

multi-level time series disentanglement problem, by learning: (1)

a set of latent variables 𝑍𝑠 = {𝑧1, 𝑧2, ..., 𝑧𝑛}, where 𝑧𝑖 ⫫ 𝑧 𝑗 ,∀1 ≤
𝑖, 𝑗 ≤ 𝑛; and (2) a division of latent variables 𝑍𝑔 = {𝑔1, ..., 𝑔𝑚},
where 𝑔𝑖 ⫫ 𝑔 𝑗 ,∀1 ≤ 𝑖, 𝑗 ≤ 𝑚, such that the latent representation z
of each time series x is semantically meaningful.

2.1 Preliminaries
First, we introduce how disentanglement is achieved for static data

from a generative modeling perspective [6]. A latent variable gen-

erative model defines a joint distribution between a feature space

𝑍 ∈ Z, and the observation space x ∈ X. Suppose 𝑝 (𝑍 ) is a prior
distribution of the latent variables, and 𝑝𝜃 (x | 𝑍 ) is a conditional
probability of x that is parameterized by neural networks 𝜃 (e.g.,
RNNs), then the disentanglement goal is to maximize the marginal

likelihood of the observed samples in the training dataset:

E𝑝D (x) [log𝑝𝜃 (x) ] = E𝑝D (x)
[
logE𝑝 (𝑍 ) [𝑝𝜃 (x | 𝑍 ) ]

]
. (1)

where 𝑝D (x) represents the true underlying distribution, which

can be estimated using the training dataset.

However, exact posterior inference of Eq. (1) is analytically in-

tractable, due to the integration E𝑝 (𝑍 ) [𝑝𝜃 (x | 𝑍 )] =
∫
𝑧
𝑝𝜃 (x |

𝑍 )𝑝 (𝑍 )d𝑧 over latent variables. Therefore, similar to variational

inference [17], an amortized inference distribution 𝑞𝜙 (𝑍 | x) is
introduced to approximate the posterior with learnable parameters

𝜙 . A lower bound (ELBO) of Eq. (1) can be derived as:

LELBO (x) = −𝐷KL

(
𝑞𝜙 (𝑍 |x) ∥𝑝 (𝑍 )

)
+ E𝑞𝜙 (𝑍 |x) [log𝑝𝜃 (x |𝑍 ) ] . (2)

To learn disentangled representations, 𝛽-VAE [6, 14] has been

introduced as an effective solution. It is a variant of the Variational

AutoEncoder (VAE) that attempts to learn a disentangled represen-

tation by optimizing a heavily penalized objective with 𝛽 > 1.

L𝛽−ELBO (x) = −𝛽𝐷KL

(
𝑞𝜙 (𝑍 |x) ∥𝑝 (𝑍 )

)
+ E𝑞𝜙 (𝑍 |x) [log𝑝𝜃 (x |𝑍 ) ] . (3)

The penalization enables disentangled effects of models on im-

age datasets. The 𝛽 constraint imposes a limit on the capacity of the

latent information channel and controls the emphasis on learning

statistically independent latent factors. With increasing 𝛽 , the latent

variables become more disentangled as the distributions in the la-

tent space deviate from each other by fitting the marginal Gaussian

distribution more than the KL divergence. Thus, semantically simi-

lar observations move closely, resulting in clusters corresponding

to underlying factors of variation, which facilitate interpretation.

2.2 Sequential Data Meets VAE: KL Vanishing
To model sequential data, the autoregressive decoder is often used

with VAE, such as LSTM-VAE [10], for time series analysis. However,

when compounded with strong autoregressive decoders such as

LSTMs [16], VAE suffers from a critical problem known as posterior

collapse or KL vanishing. The decoder in VAE reconstruct the data

independently of the latent variables, and the KL term vanishes

to 0. This is because the reconstruction term in the objective will

dominate the KL divergence term during the training phase. As a

result, the model generates time series without making effective

use of the latent variables.

Specifically, in Eq. 3, the latent variables 𝑍 become independent

from observations x, when the KL divergence term collapses to

zero. Thus, the latent variable 𝑍 can not serve as an effective repre-

sentation for the input x, which is also known as the information
preference problem [9]. In this case, pushing Gaussian clouds away

from each dimension in the latent space to encourage disentan-

gling latent factors becomes meaningless if latent distributions are

independent and unhooked with the observation space.

2.3 Individual Factor Disentanglement
To alleviate the KL vanishing problem and preserve the disentan-

glement property, in this section, we first decompose the evidence

lower bound (ELBO) to better understand the disentaglement and

the causes of the KL vanishing problem. Then, we introduce the

mutual information maximization term to the ELBO decomposition,

which enables learning a better representation 𝑍 that captures the

semantic characteristics of the input x.
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2.3.1 ELBO TC-Decomposition. To understand the internal mech-

anism of the disentanglement, we decompose the ELBO to find

evidence linking factorial representations to disentanglement. By

decomposing the ELBO into separate components, we can have a

new perspective for the cause of the KL vanishing problem: introduc-
ing heavier penalty on the ELBO tends to encourage the independence
between latent variables, but neglects the mutual information between
the latent variables and the input.

More specifically, we define 𝑞𝜙 (𝑍, x) = 𝑞𝜙 (𝑍 | x)𝑝𝜃 (x). Follow-
ing [8, 24], we denote 𝑞𝜙 (𝑍 ) = E𝑝𝜃 (x)𝑞(𝑧 | x) as the aggregated
posterior, which captures the aggregate structure of the latent vari-

ables under the data distribution of 𝑝𝜃 (x). Mathematically, the KL

term in Eq. 2 and 3 can be decomposed with a factorized 𝑝 (𝑍 ) as:

𝐷KL (𝑞𝜙 (𝑍 | x) | |𝑝 (𝑍 )) = KL(𝑞𝜙 (𝑍, x) | |𝑞𝜙 (𝑍 )𝑝𝜃 (x))︸                                ︷︷                                ︸
(i) Index-Code MI

+ KL(𝑞𝜙 (𝑍 ) ∥
∏
𝑗

𝑞𝜙
(
𝑧 𝑗
)
)︸                           ︷︷                           ︸

(ii) Total Correlation

+
∑︁
𝑗

KL

(
𝑞𝜙

(
𝑧 𝑗
)
∥𝑝

(
𝑧 𝑗
) )

︸                          ︷︷                          ︸
(iii) Dimension-wise KL

(4)

where 𝑧 𝑗 denotes the 𝑗th dimension of the latent variable.

The first term can be interpreted as the index-code mutual infor-

mation (MI) 𝐼𝑞𝜙 (𝑍 ; x), which is the MI between the data variable

and latent variable. The second term is referred to as the total cor-

relation (TC), which acts as a generalization of MI to more than

two random variables [34]. TC also evaluates the dependency be-

tween the variables. The penalty on TC encourages statistically

independent factors in the data distribution. A heavier penalty on

this term induces a more disentangled representation. This term

explains the success of 𝛽 -VAE. Recent works [8, 36] indicate TC is

the most important term in this decomposition for learning disen-

tangled representations by only penalizing on this term. The last

term is the dimension-wise KL, which prevents individual latent

dimensions from deviating too far away from their priors. It serves

as a complexity penalty on the aggregate posterior, according to

the minimum description length formulation of the ELBO [15].

Increasing the 𝛽 may intensify the KL vanishing problem: along

with optimizing the ELBO, when the model has a better quality of

disentanglement within the learned latent representations, it penal-

izes the MI simultaneously. It can, in turn, lead to under-fitting or

ignoring the latent variables. The approximate inference distribu-

tion is often significantly different from the true posterior. This is

undesirable because one major goal of unsupervised learning is to

learn meaningful latent features that should depend on the observa-

tions. Thus, the ELBO objective favors fitting the data distribution

over performing correct amortized inference. When the two goals

are conflicting, the ELBO objective tends to sacrifice the correct

inference to better fit (or worse overfit) training data, which we

can refer to as the information preference problem.

2.3.2 ELBO DTS-Decomposition. To address the information pref-

erence problem, in this subsection, we propose an ELBO decompo-

sition strategy by explicitly maximizing the MI between the latent

space and the input. In this way, we can disentangle the latent space

without sacrificing the correct inference.

Specifically, as discussed before, the latent variable 𝑍 becomes

independent from observations x. To encourage the model to use
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Figure 3: Structure of the group segment disentanglement.

the latent variables, we add an MI maximization term, which en-

courages a highMI between x and𝑍 . In other words, we can address
the information preference problem by balancing the preference be-

tween correct inference and fitting data. Beginning from the ELBO

in LSTM-VAE (in Eq. 2), we arrive at:

−𝐷KL

(
𝑞𝜙 (𝑍 | x) ∥𝑝 (𝑍 )

)
+ 𝛼𝐼𝑞𝜙 (x;𝑍 ) + E𝑞𝜙 (𝑍 |x) [log𝑝𝜃 (x | 𝑍 ) ] (5)

where 𝐼𝑞𝜙 (x;𝑍 ) denotes the MI between x and 𝑍 under the distri-

bution 𝑞𝜙 (x;𝑍 ).
But this objective can not be directly optimized. Thus, we rewrite

it into another equivalent form:

−𝐷KL

(
𝑞𝜙 (𝑍 | x) ∥𝑝 (𝑍 )

)
+𝛼𝐷KL

(
𝑞𝜙 (𝑍 ) ∥𝑝 (𝑍 )

)
+E𝑞𝜙 (𝑍 |x) [log𝑝𝜃 (x | 𝑍 ) ] .

(6)

The MI maximization term (the second part of Eq. 6) plays the

same role as the first term in the ELBO-TC decomposition (as shown

in Eq. 4), but the optimization directions are contrary. Thus, in-
creasing the disentanglement degree may intensify the KL vanishing
problem, and vice versa. To enforce the model to preserve the disen-

tanglement property while alleviating the KL vanishing, here, we

combine the MI regularizer term with the ELBO-TC decomposition

in Eq. 4 and merge the MI maximization term, then the ELBO can

be re-written as:

LELBO (x) = −𝛽𝐷KL (𝑞 (𝑍 ) ∥
∏
𝑗

𝑞
(
𝑧 𝑗
)
) − 𝛽

∑︁
𝑗

𝐷KL

(
𝑞
(
𝑧 𝑗
)
∥𝑝

(
𝑧 𝑗
) )

+ (𝛼 − 𝛽)𝐷KL

(
𝑞𝜙 (𝑍 ) ∥𝑝 (𝑍 )

)
+ E𝑞𝜙 (𝑍 |x) [log𝑝𝜃 (x | 𝑍 ) ] ,

(7)

Mathematically, we alleviate the KL vanishing problem by introduc-

ing the MI maximization term, while preserving a heavier penalty

(when 𝛽 > 1) on the total correlation and the dimension-wise KL

to keep the disentanglement property.

2.4 Group Segment Disentanglement
By employing the aforementioned ELBO DTS-Decomposition, we

can achieve individual factor disentanglement. However, the capac-

ity of one single factor is often not sufficient to represent complex

concepts [14]. Thus, in this subsection, we generalize individual dis-

entanglement to group segment disentanglement to further enrich

the latent factor representations.

Fig. 3 illustrates the process of learning latent group segment

disentanglement. For simplicity, here, we show how to learn two

semantic segments, although our method can be extended to more

segments. Formally, let 𝑔𝑖 and 𝑔 𝑗 be two semantic segments in

𝑍 , where our goal is to make them independent with each other,

i.e., 𝑔𝑖 ⫫ 𝑔 𝑗 . To achieve this, we optimize each segment with two

objectives to encourage the representations to be semantically in-

dependent.

First, we derive an ELBO objective for group segments. Following

the evidence lower bound of the marginal likelihood in Eq. 6, we

 

3273



Towards Learning Disentangled Representations for Time Series KDD ’22, August 14–18, 2022, Washington, DC, USA

can get a similar form for group segments:

LELBO−G (x) = −𝐷KL

(
𝑞𝜙𝑚 (𝑔𝑖 | x) ∥𝑝 (𝑔𝑖 )

)
−𝐷KL

(
𝑞𝜙𝑛 (𝑔𝑗 | x) ∥𝑝 (𝑔𝑗 )

)
+ E𝑞𝜙𝑚 (𝑔𝑖 ,𝑔𝑗 |x)

[
log𝑝𝜃 (x | 𝑔𝑖 , 𝑔𝑗 )

]
+ 𝛼𝐷KL

(
𝑞𝜙 (𝑍 ) ∥𝑝 (𝑍 )

)
.

(8)

which (1) approximates the 𝑝 (𝑔𝑖 ) and 𝑝 (𝑔 𝑗 ) from 𝑞𝜙 (𝑔𝑖 | x) and
𝑞𝜙 (𝑔 𝑗 | x), respectively, (2) fits the data distribution via recon-

struction, and (3) maximizes MI between the latent and the input

spaces.

Second, we introduce auxiliary classification heads to encourage

each segment to contain only a single concept by leveraging the

labeling function (i.e., the mapping to the ground truths) of each

auxiliary task. Formally, let 𝑓𝑖 : Z → Y and 𝑓𝑗 : Z → Y be the

labeling functions of two auxiliary tasks that correspond to 𝑔𝑖 and

𝑔 𝑗 , respectively. That is, 𝑓𝑖 (𝑍𝑔) and 𝑓𝑗 (𝑍𝑔) are the ground truths

of the two tasks for 𝑔𝑖 and 𝑔 𝑗 . The two classification heads aim to

learn hypotheses ℎ𝑖 : Z → Y and ℎ 𝑗 : Z → Y to approximate

𝑓𝑖 and 𝑓𝑗 , respectively. To optimize ℎ𝑖 and ℎ 𝑗 , we can quantify the

empirical error based on the following theorem.

Theorem 1. For two independent group segments 𝑔𝑖 and 𝑔 𝑗 , where
𝑔𝑖 ⫫ 𝑔 𝑗 and 𝑍𝑔 =

{
𝑔𝑖 , 𝑔 𝑗

}
, the empirical error on the disentangled

segments according to the distributionZ that a hypothesisℎ disagrees
with a labeling function 𝑓 is:

𝜖 (ℎ) = E𝑔𝑖∼Z
[
𝑓𝑖
(
𝑍𝑔

)
− ℎ𝑖 (𝑔𝑖 )

]
+ E𝑔𝑗∼Z

[
𝑓𝑗
(
𝑍𝑔

)
− ℎ 𝑗

(
𝑔 𝑗
) ]

where 𝜖 (ℎ) denotes the empirical error of DTS with respect to ℎ.

Proof. Since 𝑔𝑖 ⫫ 𝑔 𝑗 , we can derive the empirical error as follows:

𝜖 (ℎ) = E(𝑔𝑖 ,𝑔𝑗 )∼Z
[
𝑓
(
𝑍𝑔

)
− ℎ

(
𝑍𝑔

) ]
= E𝑔𝑖∼Z

[
𝑓𝑖
(
𝑍𝑔

)
− ℎ𝑖 (𝑔𝑖 )

]
+ E𝑔𝑗∼Z

[
𝑓𝑗

(
𝑍𝑔

)
− ℎ 𝑗

(
𝑔𝑗
) ]
.

Remark 1. Based on the independence property between 𝑔𝑖 and
𝑔 𝑗 , the distribution of Z can be decomposed into two parts so as to
the error.

Following the above objectives, we can learn 𝑔𝑖 and 𝑔 𝑗 as follows.

Let 𝜃𝑖 and 𝜃 𝑗 be the parameters of the auxiliary classification heads

for 𝑔𝑖 and 𝑔 𝑗 , and 𝜃𝑣𝑎𝑒 be the parameters of the VAE model. Assum-

ing that 𝑃 (𝑔𝑖 ) , 𝑃
(
𝑔 𝑗
)
∼ N(0, I) (which is a common assumption

in generative models), we can apply a reparameterization trick by

using sequential models (LSTMs or TCNs [3]) as the universal ap-

proximator of 𝑞 to encode the x into 𝑔𝑖 and 𝑔 𝑗 , respectively. Then,

the ELBO objective in Eq. 8 will be applied to learn disentangled

group segments. Meanwhile, we can resort to auxiliary classifica-

tion heads to make 𝑔𝑖 task- 𝑗-invariant, and 𝑔 𝑗 task-𝑖 invariant:

Ei
(
𝜃𝑣𝑎𝑒 , 𝜃𝑖 , 𝜃 𝑗

)
= E

[
ℎ𝑖 (𝑔𝑖 ;𝜃𝑣𝑎𝑒 , 𝜃𝑖 ) − 𝑓𝑖

(
𝑍𝑔

) ]
− 𝜆E

[
ℎ 𝑗

(
𝑔𝑖 ;𝜃𝑣𝑎𝑒 , 𝜃 𝑗

)
− 𝑓𝑗

(
𝑍𝑔

) ]
Ej

(
𝜃𝑣𝑎𝑒 , 𝜃𝑖 , 𝜃 𝑗

)
= E

[
ℎ 𝑗

(
𝑔𝑗 ;𝜃𝑣𝑎𝑒 , 𝜃 𝑗

)
− 𝑓𝑗

(
𝑍𝑔

) ]
− 𝜆E

[
ℎ𝑖

(
𝑔𝑗 ;𝜃𝑣𝑎𝑒 , 𝜃𝑖

)
− 𝑓𝑖

(
𝑍𝑔

) ]
.

(9)

Specifically, we optimize the parameters
ˆ𝜃𝑣𝑎𝑒 , ˆ𝜃𝑖 , ˆ𝜃 𝑗 based on: ( ˆ𝜃𝑣𝑎𝑒 , ˆ𝜃𝑖 )

= argmin𝜃𝑣𝑎𝑒 ,𝜃𝑖 𝐸

(
𝜃𝑖 , ˆ𝜃 𝑗

)
and

ˆ𝜃 𝑗 = argmax𝜃 𝑗
𝐸

(
ˆ𝜃𝑣𝑎𝑒 , ˆ𝜃𝑖 , 𝜃 𝑗

)
, where

the parameter 𝜆 controls the trade-off between the two objectives

that shape the features during training. The update process is simi-

lar to vanilla stochastic gradient descent updates for feed-forward

deep models. −𝜆 factor can make disentangled features less discrim-

inative for the irrelevant task. Here, we use a gradient reversal layer

(GRL) [12] to exclude the discriminative information. During the

forward propagation, GRL acts as an identity transform. During the

backpropagation, GRL takes the gradient from the subsequent level,

and multiplies the gradient by a negative constant, then passes it

to the preceding layer.

2.4.1 Application to Domain Adaptation. To further illustrate the

benefits of the proposed group segments disentanglement for time

series, we apply it to solve the domain adaptation problem as a

concrete application scenario. When labeled data is scarce for a

specific target task, domain adaptation often offers an effective

solution by utilizing data from a related source task from a transfer

learning perspective. The hope is that this source domain is related

to the target domain, and thus transferring knowledge from the

source can improve the performance within the target domain [33].

But “unrelated” features in the source samples can hurt the perfor-

mance, leading to negative transfer. In this subsection, we take a

step towards addressing the negative transfer issue via disentan-

gling the latent variables into grouped “class-dependent” segments

that are domain invariant as transferable common knowledge and

“domain-dependent” segments that may lead to negative transfer.

In the unsupervised domain adaptation problem, we use the

labeled samples 𝐷𝑆 =
{
x𝑆
𝑖
, 𝑦𝑆

𝑖

}𝑛𝑆
𝑖=1

on the source domain to clas-

sify the unlabeled samples 𝐷𝑇 =

{
x𝑇
𝑗

}𝑛𝑇
𝑗=1

on the target domain.

We aim to obtain two independent latent variables with disentan-

glement, including a domain-dependent latent variable 𝑔𝑑 and a

class-dependent latent variable𝑔𝑦 . These two variables are expected

to encode the domain information and the class information, re-

spectively. Then, we can use the class-dependent latent variable

for classification since it is domain-invariant. Under the assump-

tion that there exists some hypothesis ℎ that performs well in both

domains, we show that this quantity together with the empirical

source error 𝜖𝑆 (ℎ) characterize the target error 𝜖𝑇 (ℎ). Deriving
from Theorem 1, we have:

Theorem 2. Assume that the class factor 𝑔𝑦 and the domain fac-
tor 𝑔𝑑 are independent, i.e., 𝑔𝑦 ⫫ 𝑔𝑑 . Let 𝑍𝑔 =

{
𝑔𝑦, 𝑔𝑑

}
, and the error

on the disentangled source and target domain with a hypothesis ℎ is:
𝜖𝑆 (ℎ) = E𝑔𝑦∼Z𝑆

[
𝑓𝑦

(
𝑍𝑔

)
− ℎ𝑦

(
𝑔𝑦

) ]
+ E𝑔𝑑∼Z𝑆

[
𝑓𝑑

(
𝑍𝑔

)
− ℎ𝑑 (𝑔𝑑 )

]
𝜖𝑇 (ℎ) = E𝑔𝑦∼Z𝑇

[
𝑓𝑦

(
𝑍𝑔

)
− ℎ𝑦

(
𝑔𝑦

) ]
+ E𝑔𝑑∼Z𝑇

[
𝑓𝑑

(
𝑍𝑔

)
− ℎ𝑑 (𝑔𝑑 )

]
.

According to the Theorem 2, we can find that the disentangled

empirical classification error rate with respect to ℎ in the source

domain is lower than before disentanglement (𝜖
𝑦

𝑆
(ℎ) = 𝜖𝑆 (ℎ) −

𝜖𝑑
𝑆
(ℎ), where 𝜖𝑑

𝑆
(ℎ) ≥ 0). Here, we prove that the disentanglement

of the representation space could be helpful and necessary for

obtaining a lower classification error rate. The probabilistic bound

on the performance 𝜖𝑇 (ℎ) evaluated on the target domain given its

performance 𝜖𝑆 (ℎ) on the source domain can be defined as:

𝜀T (ℎ) ≤ 𝜀S (ℎ) +
1

2

𝑑HΔH (S, T) + 𝜆 (10)

where𝑑HΔH measures the discrepancy distance between the source

and target distribution with respect to hypothesis ℎ; 𝜆 does not de-

pend on a particularℎ, and is small enough to be a negligible term in

the bound [4]. Our method provides a smaller discrepancy distance

between two domains since it eliminates the discriminative infor-

mation during the disentanglement. Thus, a tighter upper bound for

the 𝜀T (ℎ) can be achieved through reducing 𝑑H△H (S,T), which
eventually leads to a better approximation of 𝜀T (ℎ).
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3 RELATEDWORK
Relation to LSTM-VAE and 𝛽-VAE: Encoders in LSTM-VAE maps a

data point from the observation space into a probabilistic output

of Gaussian cloud with mean 𝜇 (x) and ‘ellipsoid’ orientation de-

termined by the diagonal covariance matrix diag(𝜎 (x)). Compared

with LSTM-VAE, 𝛽-VAE relaxes the stochastic ‘compression’ via

mapping everything to a Gaussian heap by applying the relaxation

parameter that might give more preference to the fitting loss and

sacrifice the correct inference. Our proposed DTS can be considered

as another form of compression by the minimization of 𝐼𝝓 (x;𝑍 ).
DTS relaxes the condition to map all conditional distributions to

one Gaussian heap.

Relation to Domain Adaptation Methods: Existing domain adapta-

tion methods focus on (i) utilizing maximum mean discrepancy to

measure the domain alignment [31]; and (ii) extracting the domain-

invariant representation as transferable common knowledge on the

feature space [7, 23, 35]. In contrast, the DTS aims to extract the

group segments in the latent disentangled semantic representation

of the data. DTS also introduces interpretability in the latent space

via weak-supervised signals as imposing special constraints on the

latent variables.

4 EXPERIMENTS
In this section, we aim to answer the following questions. Q1:
Compared with non-disentanglement methods, how quantitatively

effective is the proposed disentanglement strategy? Q2: Does indi-
vidual latent factor disentanglement benefit the generation process

of the time series in a more informative way? Q3: Can latent group

segment disentanglement strategy separate semantic concepts?

4.1 Experimental Setup
We provide insights on interpreting the latent representations with

semantic meanings. First, to validate the effectiveness of the disen-

tanglement strategy, we apply DTS to domain adaptation tasks, and

further illustrate the benefits of DTS on separating and extracting

different semantic meaningful sequential patterns as transferable

common knowledge and domain-dependent information (Section

4.2); Second, we provide latent traversals to validate that DTS tends

to discover more informative latent factors and provide more mean-

ingful disentangled representations of time series (Section 4.3);

Finally, we visualize the disentangled segments over the represen-

tation space, to investigate the discriminative ability of the group

disentanglement strategy (Section 4.4).

4.1.1 Datasets. We evaluate DTS on five benchmark datasets for

individual latent factor and group segment disentanglements.

• Human Activity Recognition (HAR) [2]: contains sequential
accelerometer, gyroscope, and estimated body acceleration data.

• Heterogeneity Human Activity Recognition (HHAR) [30]:
includes accelerometer data from 31 smartphones of different

manufacturers and models positioned in various orientations.

• WISDM Activity Recognition (WISDM AR) [18]: contains 33
participants’ accelerometer data, which are sampled at 20 Hz.

• uWave [22]: is a large gesture library with over 4000 samples

collected from eight users over an elongated period of time for a

gesture vocabulary with eight gesture patterns.

Problem W/O R-DANN VRADA CoDATS DTS Target

HAR 2→ 11 83.3 80.7 64.1 74.5 84.3 100.0

HAR 7→ 13 89.9 75.3 78.3 96.5 98.1 100.0

HAR 9→ 18 31.1 56.6 59.8 85.8 89.8 100.0

HAR 14→19 62.0 71.3 64.4 98.6 100.0 100.0

HAR 18→23 89.3 78.2 72.9 89.3 94.9 100.0

HAR 7→ 24 94.4 84.8 93.9 99.1 100.0 100.0

HAR 17→25 57.3 66.3 52.0 97.6 100.0 100.0

HHAR 1→3 77.8 85.1 81.3 90.8 93.7 99.2

HHAR 3→5 68.8 85.4 82.3 94.3 95.9 99.0

HHAR 4→5 60.4 70.4 71.6 94.2 94.9 99.0

HHAR 1→6 72.1 81.7 74.9 90.8 92.1 98.8

HHAR 4→6 48.0 64.6 62.7 85.3 92.3 98.8

HHAR 5→6 65.1 54.4 60.0 91.7 92.5 98.8

HHAR 5→8 95.3 82.5 87.5 95.8 97.9 99.3

WISDM 4→ 15 78.2 69.2 82.7 81.4 82.9 100.0

WISDM 2→ 25 81.1 57.8 72.2 90.6 95.8 100.0

WISDM 25→ 29 47.1 61.6 81.9 74.6 82.2 95.7

WISDM 7→ 30 62.5 41.7 61.9 73.2 89.2 100.0

WISDM 21→ 31 57.1 61.0 68.6 92.4 96.4 97.1

WISDM 2→ 32 60.1 49.0 66.7 68.6 70.7 100.0

WISDM 1→ 7 68.5 44.8 63.0 66.1 72.7 96.4

uWave 2→ 5 86.3 33.3 18.5 98.2 100.0 100.0

uWave 3→ 5 82.7 63.7 32.4 92.9 95.6 100.0

uWave 2→ 6 86.0 34.5 25.3 93.8 97.8 100.0

uWave 2→ 7 85.1 53.9 12.2 91.4 98.9 100.0

uWave 3→ 7 95.5 64.0 30.4 92.0 98.9 100.0

uWave 1→ 8 100.0 78.6 11.0 93.8 100.0 100.0

uWave 7→ 8 95.2 49.7 12.5 93.8 96.7 100.0

Table 1: Target classification accuracy (based on the class-
dependent representation 𝑔𝑦) for time series domain adap-
tation (shown as [Dataset source_id → target_id]: accuracy)
on randomly-chosen problems for each dataset, adapting
between different users. We include no adaptation as an ap-
proximate lower bound (W/O), and models trained directly
on labeled target data as upper bound (target).

• ECG Signal [25]: contains heartbeats annotated by at least two

cardiologists. The annotations are mapped into 5 groups.

Our adaptation problems consist of the realistic use-case adapting

a model from one participant’s data to another participant’s data.

Each dataset consists of data from a number of participants. The

multivariate time series datasets include a participant identifier, and

we use this feature to split data into multiple domains. We build up

a classifier from one source domain with labeled data, and apply it

for the label-free target domain as adaptation. We follow the same

procedure in [35] to select 7 of the possible adaptation problems be-

tween two domains as [source_id→ target_id] (excluding adapting

a domain to itself).

4.1.2 Baselines. We compare DTS with three state-of-the-art do-

main adaptation algorithms (R-DANN, VRADA, and CoDATS) and

one time series generative model (LSTM-VAE):

• Recurrent DomainAdversarial Neural Network(R-DANN) [1]:
employs an LSTM network, and promotes the emergence of fea-

tures that are (i) discriminative for the learning task on the source

domain and (ii) indiscriminate with respect to the shift between

the domains.

• Variational Recurrent Adversarial Deep Domain Adaptation
(VRADA) [26]: uses a variational RNN and trains adversarially to

capture temporal relationships that are domain-invariant.

• Convolutional Deep Domain Adaptation (CoDATS) [35]: lever-
ages domain-invariant domain adaptation methods to operate on

time series data, and utilizes weak supervisions from labels.
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Figure 5: Latent traversal plots from DTS on ECG. All �gures of latent code traversal each block corresponds to the traversal
of a single latent variable while keeping others �xed to either their inferred. Each row represents a di�erent seed image used
to infer the latent values with traversal over the [-4, 4] range. Blue and green denote two time-series with di�erent sequential
patterns. The �rst two rows denote the decline degree at the �rst turning point, transition from rigid to a more mild manner;
The last two rows denote the rising trend at the second turning point, transition from inconspicuous to obvious.

It can be seen that DTS is able to discover and learn to disentan-
gle all of the factors automatically. Often it could generate more
convincing inverse time-series than LSTM-VAE. Comparing the
visualization from panels (a), (b) and panels (c), (d), DTS could gener-
ate a time-series in a more diverse way. It can be seen that sampling
from an entangled representation results in LSTM-VAE((a), (b)) only
re�ects small di�erences according to the traversal perturbations.
One possible reason to explain this phenomenon is that the LSTM-
VAE is dominated by the reconstruction term during the training
phase. The slight changes only correspond to the reconstruction
distortion due to the latents, and observations are independent.
Comparing with LSTM-VAE, some of the DTS latents tend to learn
a smooth continuous transformation over a wider range of factor
values than LSTM-VAE, which contains a wider range of vibrations
as shown in panels (b) and (d). A clear transition process can be
observed from the manipulation results with respect to z space. As
the value of individual latent factor increases, the semantic of the
latent factor changes across di�erent sequential patterns. Other
latents are robust with the vibrations, as it does not play any role in
the generation process. Single latent units are sensitive to changes
in single generative factors, while being relatively invariant to
changes in other factors. One possible reason is that the represen-
tation of the time-series could be e�ectively expressed with a few
latents in the z. Individual latents factor disentanglement process
may help us to recognize the useful latent codes, and regard the
redundant parts. This phenomenon demonstrates that DTS is able to
disentangle useful knowledge from sequential data, which is more
informative as interpretable factors in the latent space.

4.2.2 Traversal Plots to Discover Semantics. There is currently no
general method for quantifying the degree of learned disentangle-
ment (unless there are concept groud-truth factors E available, then

the mutual information gap (MIG) [13, 23] could be used to deter-
mine if there exists a deterministic, invertible relationship between
I and E). Therefore there is no way to quantitatively compare the
degree of disentanglement achieved by di�erent models or when
optimizing the hyperparameters of a single model. Figure 5 plots
the manipulation results of the latent traversal results from DTS.
All �gures of latent code traversal each block corresponds to the
traversal of a single latent variable while keeping others �xed to
either their inferred. Each row represents a di�erent seed image
used to infer the latent values with traversal over the [-4, 4] range.
It suggests that our manipulation approach performs well on all
attributes in both positive and negative directions. We observe that
moving the latent code can produce continuous change, with the
sequential patterns orthogonal to the others. According to the edit-
ing process, the �rst and the third rows (sampled from class 1 and
2 respectively) denote the decline degree at the �rst turning point,
transition from rigid to a more mild manner; the second and the last
rows (with the same sample strategy) denote the rising trend at the
second turning point, transition from inconspicuous to obvious. It
demonstrates that DTS discovered in unsupervised manner factors
that encode sequential trend and depict an interpretable property
in the generation.

These observations provide strong evidence that DTS does not
produce time-series randomly, but learns some interpretable se-
mantics in the latent space.

4.3 Latent Group Segments Disentanglement
To answer the research question Q3, we get some insights about
the interpretability and e�ectiveness of the group segment disen-
tanglement strategy.

4.3.1 Insights of E�ectiveness via Visualizations. To further under-
stand the discriminative ability of the disentangled group segments,

Figure 4: Latent traversal plots from DTS on ECG. All figures of latent variables traversal each block corresponds to the traversal
of a single latent variable while keeping others fixed to their inferred. Each row represents a different seed image used to infer
the latent values with traversal over the [-4, 4] range. Blue and green denote two time series with different sequential patterns.
The first two rows denote the decline degree at the first turning point, transition from rigid to a more mild manner; The last
two rows denote the rising trend at the second turning point, transition from inconspicuous to obvious.

Dataset Acc/D-S Acc/D-T Acc/C-S Acc/C-T AUC/C-S AUC/C-T

HAR 100.0 100.0 100.0 97.2 100 99.2

HAR/r 54.7 66.7 35.9 22.2 54.6 53.7

HHAR 96.9 98.8 97.9 91.1 99.8 98.7

HHAR/r 70.8 70.9 30.5 17.6 58.3 52.7

WISDM 100 100 94.5 70.7 99.0 85.9

WISDM/r 67.3 46.7 38.2 33.3 69.7 67.9

uWave 100 100 99.1 94.4 99.0 85.9

uWave/r 55.4 48.2 18.8 12.5 54.6 53.7

Table 2: Ablation studies: discriminability. The results are
listed as X-Y (X: D denotes discriminability on domains, C
denotes discriminability on tasks; Y: S and T denote fea-
tures sampled from source and target domains, respectively).
Top rows: performance based on the disentangled domain-
dependent 𝑔𝑑 , or class-dependent 𝑔𝑦 for time series do-
main adaptation. Bottom rows(/r): performance based on
the domain-invariant 𝑔𝑦 and class-invariant 𝑔𝑑 segments.

• LSTM-VAE [10]: is similar to an autoencoder. It learns an LSTM as

the encoder that maps the sequential data to a latent representation

in a probabilistic manner, and decodes the latents back to data.

4.2 Performance Evaluation
To answer Q1, we apply DTS to domain adaptation tasks to validate

the effectiveness of our proposed disentanglement strategy, and

compare DTS with the state-of-the-art algorithms. During the train-

ing phase, only the training dataset is accessible: labeled data as the

source domain and unlabeled data as the target domain. During the

evaluation, the test data becomes available as the target domain.

4.2.1 Quantitative Results. Table 1 compares the performance of

DTS and the baselines on HAR, HHAR, WISDM AR, and uWave

datasets. We include no adaptation as an approximate lower bound,

and models trained directly on labeled target data as the upper

bound. After the group disentanglement, two variables are used to

encode the domain information and the class information, respec-

tively. We use the class-dependent latent variable for classification

since it is domain-invariant. We observe that DTS outperforms the

baselines with consistently +3% higher accuracy over all datasets.

These results ascertain the effectiveness of DTS in boosting the

performance of domain adaptation by obtaining domain-invariant

transferable components as common knowledge. The enhanced

results also validate eliminating irrelevant information from group

disentanglement could prevent negative transferring.

4.2.2 Ablation Studies. We study whether DTS can decompose the

representations into domain-dependent and class-dependent com-

ponents with a series of ablation studies. We compare the discrim-

inability of the disentangled features, including domain-dependent

(𝑔𝑑 ) and class-dependent (𝑔𝑦 ) components (see Section 2.4.2), sam-

pled from both source and target domains. The ablations include (i)

using domain-dependent features 𝑔𝑑 and class-dependent features

𝑔𝑦 , and (ii) domain-invariant and class-invariant features (shown as

/r), respectively. The comparison between DTS and the ablations (/r)
is shown in Table 2. We observe that DTS significantly outperforms

the ablations over all datasets. Disentangled task-dependent group

segments consistently help to improve the performance. Conversely,

the class-dependent features are invariant to the change of domains,

and the domain-dependent features are invariant to the change of

classes. DTS could preserve the discriminability of the disentangled

features corresponding to the specified task, and simultaneously

make disentangled features less discriminative for the irrelevant

task. It indicates that these disentangled group segments do not

contain any useful semantic concepts for other irrelevant tasks.

4.3 Individual Latent Factor Disentanglement
To answer Q2, we provide latent traversals as qualitative results to
validate that DTS tends to consistently discover more informative

latent factors and provide more meaningful disentangled represen-

tations of time series (see Section 2.3).

4.3.1 Traversal Plots to Discover Semantics. There is currently no

general method for quantifying the degree of learned disentangle-

ment or optimizing the hyperparameters (unless there are concept

ground-truth factors 𝑣 available, then the MI gap [8, 28] could be

used to determine if there exists a deterministic, invertible relation-

ship between 𝑧 and 𝑣). Thus, we can not quantitatively compare the

degree of disentanglement achieved by different models or when

optimizing the hyperparameters of a single model. Fig. 4 plots the

 

3276



KDD ’22, August 14–18, 2022, Washington, DC, USA Yuening Li et al.

manipulation results of the latent traversal results from DTS. Each
block of the figure corresponds to the traversal of a single latent

variable while keeping others fixed. Each row represents a different

seed image used to infer the latent values with traversal over the

[-4, 4] range. The results show that our manipulation approach per-

forms well on all attributes in both positive and negative directions.

We observe that moving the latent variables can produce continu-

ous change, with the sequential patterns orthogonal to the others.

According to the editing process, the first two rows (sampled from

two different time series of ECG) denote the decline degree at the

first turning point, transition from rigid to a more mild manner; the

last two rows (with the same sampling strategy) denote the rising

trend at the second turning point, transition from inconspicuous

to obvious. It shows that DTS discovers latent factors that encode
sequential trends and depict an interpretable property in the gener-

ation. These observations provide strong evidence that DTS does

not produce time series randomly but learns some interpretable

semantics in the latent space.

4.3.2 Qualitative Comparison of Latent Variables. We train DTS on

ECG data to evaluate disentanglement performance for individual

latent factors. We use the same traversal way to show the disen-

tanglement quality. Fig. 5 provides a qualitative comparison of the

disentanglement performance of DTS and LSTM-VAE. We edit the

time series by altering the latent variables in theZ space. Here, the

dimension of the representation is set to be 12. This setting helps re-

duce the impact of differences in complexity by model frameworks.

However, for a better comparison, we only select eight dimensions

that change more regularly. The sequences visualized in panels are

generated from 𝑍 ∼ 𝑞 (𝑍 | 𝒙1:𝑇 ). Hence, the dynamics are imposed

by the encoder, but the identity is sampled from the prior.

Fig. 5 shows traversals in latent variables that depict an inter-

pretable property in generating time series. Often it could generate

more semantic convincing time series than LSTM-VAE. It can be

seen that sampling from an entangled representation results in

LSTM-VAE (panel (a)) only reflects small differences according to

the traversal perturbations. One possible reason is that the LSTM-

VAE is dominated by the reconstruction term The slight changes

only correspond to the reconstruction distortion due to the la-

tent variables and observations are independent. Comparing with

LSTM-VAE, some of the DTS latent variables tend to learn a smooth

continuous transformation over a wider range of factor values as

vibrations. A clear transition process can be observed from the

manipulation results with respect to the Z space. As the value of

individual latent factor increases, the semantic of the latent factor

changes across different sequential patterns. Other latent variables

are robust with the vibrations, as it does not play any role in the

generation process. Single latent units are sensitive to changes in

single generative factor, while being relatively invariant to changes

in other factors. One possible reason is that the representation of

the time series could be effectively expressed with a few latent

variables in theZ. Individual latent factor disentanglement process

may help us to recognize the useful latent variables, and discard the

redundant parts. All these results demonstrate that DTS is able to
disentangle useful knowledge from sequential data, which is more

informative as interpretable factors in the latent space.

(a) Visualizing the generated time series from LSTM-VAE.

(b) Visualizing the generated time series from DTS.

Figure 5: Comparison of learned latent variables. Traversals
depict an interpretable property in generating time series
from eight-dimensions of the latent variables 𝑍 (shown as
8 subfigures in a group). Traversals are sampled from two
different time series of ECG (separated by the black line),
with range [-4,4] (shown as 9 lines in one subfigure).

4.4 Latent Group Segment Disentanglement
To answer Q3, we visualize the disentangled segments in the rep-

resentation space (see Section 2.4.1). Fig. 6(a) shows the effect of

domain-dependent and domain-invariant disentanglement on the

distribution of the extracted features. For all the datasets, the adap-

tation in DTS makes the disentangled domain(class)-dependent fea-

tures more distinguishable, but the domain(class)-invariant features

indistinguishable. The results validate that DTS can learn decom-

posed segments that contain independent semantic information.

Further, we can observe an apparent clustering effect (the differ-

ent colors denote different categories). A widely-accepted assump-

tion [5] indicates that observation distribution contains separated

data clusters and data samples in the same cluster share the same

class label in domain adaptations. These results validate the dis-

criminative ability of the disentanglement. It almost matches the

prior perfectly, as the semantically similar observations are mapped
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(a) HAR (b) HHAR

(c) WISDM (d) uWave

(a) T-SNE visualizations of the DTS activations on the distribu-
tion of domain-dependent representation (left) and domain-
invariant representations(right). Blue points correspond to
the source domain examples, while red ones correspond to
the target domain ones.

(a) HAR (b) HHAR

(c) WISDM (d) uWave

(b) T-SNE visualizations of DTS activations on the distribution
of class-dependent (left) and class-invariant (right) represen-
tations. Each color denotes one specific class.

Figure 6: The effect of (a) domain-dependent and -invariant
(b) class-dependent and -invariant disentanglement on the
distribution of the extracted features. In all cases, the adap-
tation in DTSmakes the dependent/invariant features from
different sources more/less distinguishable, respectively.

closer, and create clusters. This phenomenon suggests that the dis-

entangled group segments could enhance the interpretability.

5 CONCLUSION
In this paper, we investigated a novel and challenging problem of

learning disentangled time series representations. We proposed DTS,
a multi-level disentanglement approach, covering both individual

latent factor and group semantic segments, to generate hierarchical

semantic concepts as the interpretable and disentangled represen-

tation. DTS can balance the preference between correct inference

and fitting data distribution. It also alleviates the KL vanishing

problem by introducing a mutual information maximization term

while preserving a heavier penalty on the dimension-wise KL to

keep the disentanglement property. The experimental results on

five benchmark datasets demonstrated the effectiveness of DTS in
learning interpretable semantic concepts with disentanglement.
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