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ABSTRACT

Integrating multiple graphs (or networks) has been shown
to be a promising approach to improve the graph clustering
accuracy. Various multi-view and multi-domain graph clus-
tering methods have recently been developed to integrate
multiple networks. In these methods, a network is treated
as a view or domain. The key assumption is that there is
a common clustering structure shared across all views (do-
mains), and different views (domains) provide compatible
and complementary information on this underlying cluster-
ing structure. However, in many emerging real-life appli-
cations, different networks have different data distributions,
where the assumption that all networks share a single com-
mon clustering structure does not hold. In this paper, we
propose a flexible and robust framework that allows multiple
underlying clustering structures across different networks.
Our method models the domain similarity as a network,
which can be utilized to regularize the clustering structures
in different networks. We refer to such a data model as a
network of networks (NoN). We develop NONCLUS, a novel
method based on non-negative matrix factorization (NMF),
to cluster an NoN. We provide rigorous theoretical analysis
of NONCLUS in terms of its correctness, convergence and
complexity. Extensive experimental results on synthetic and
real-life datasets show the effectiveness of our method.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
Network of Networks; Graph clustering

1. INTRODUCTION

Graph (or network®) clustering is a fundamental problem
with numerous applications. Traditional clustering meth-

'In this paper, we use graph and network interchangeably.
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Figure 1: An example of NoN. The main network
is represented by dashed nodes and edges. The
domain-specific networks are represented by solid
nodes and edges.

ods are usually designed for a single network [29, 18, 34].
In many emerging real-life applications, networks collected
from different conditions or domains are becoming avail-
able. For example, gene co-expression networks are being
collected from different tissues of model organisms [24, 5,
26]; co-author networks can be constructed for different re-
search areas [28]. Since a single network can be noisy and
incomplete, a promising approach is to exploit the shared
clustering structure in multiple networks to improve the ac-
curacy of the results.

Several approaches have been recently developed to clus-
ter multiple networks. One popular approach is multi-view
clustering [37, 20, 19]. In this approach, a set of data ob-
jects may have multiple representations (views). Different
views provide compatible and complementary information
on the underlying data distribution. The existing multi-view
graph clustering methods assume that all views consist of the
same set of data objects and are generated from the same
underlying distribution. Multi-domain graph clustering [§]
generalizes multi-view clustering to allow many-to-many re-
lationships between the nodes in different networks. Thus
different networks may consist of different sets of nodes and
have different sizes. Similar to multi-view graph clustering,
this approach also assumes that there is a single underlying



clustering structure shared across different domains. The
ensemble clustering methods [30, 12, 13] aim at integrat-
ing multiple intermediate clustering results into a consensus
one. The intermediate results can be obtained by applying
the same clustering method on different views or different
methods on the same view.

The key assumption of the existing multi-network clus-
tering methods is that different networks share the same
underlying clustering structure. However, this assumption
may not hold in real-life applications. Figure 1 shows an ex-
ample with six domains {A, B, C, D, E, F}, each of which
corresponds to a network. Domains {A, B, C} are similar
to each other and so are domains {D, E, F}. But these two
sets of domains are not similar to each other. Clearly, we
cannot assume domain sets {4, B, C} and {D, E, F} share
a common clustering structure.

Note that the similarity among different domains can also
be modeled as a network (represented by dashed lines in
Figure 1). We refer to the structure shown in Figure 1 as a
network of networks (NoN). The dashed network represents
the main network among six domains {4, B, C, D, E, F}.
Each node in the main network corresponds to a domain-
specific network represented by solid lines.

Consider an important bioinformatics problem: clustering
gene co-expression networks [15, 24]. In a gene co-expression
network, each node is a gene and an edge represents the
functional association between two connected genes. To im-
prove the clustering accuracy, we can utilize multiple gene
co-expression networks collected in different tissues. Some
tissues are similar to each other while others are not. The
similarities among tissues can be modeled as a network. For
example, in Figure 1, the main network of domains {4, B,
C, D, E, F} may represent the similarity among six different
tissues. For each tissue, its domain-specific network repre-
sents the tissue-specific gene co-expression network. As an-
other example, consider the co-author networks of different
research areas. The main network may represent the simi-
larity among different areas and a domain-specific network
may represent the co-author network in a particular area.

The NoN setting illustrated in Figure 1 is different from
the existing multi-view or multi-domain clustering scenario.
In the NoN setting, there can be more than one underlying
clustering structures among the domain-specific networks.
In Figure 1, the clustering structure shared by domain-specific
networks {4, B, C} may be different from the one shared by
{D, E, F}. For example, in domains {D, E, F}, nodes {1,
2, 8} are very likely to be in the same cluster, but they are
in three different clusters in domains {A, B, C}. Thus as-
suming one common clustering structure for all six domain-
specific networks is not reasonable. Consider the previous
tissue-specific gene co-expression network and area-specific
co-author network examples. Given a set of tissue-specific
gene co-expression networks, the same set of genes may form
a cluster (e.g., a pathway or functional module) in several
related tissues but not in others. Given a set of area-specific
co-author networks, an author can be in different clusters
(e.g., research sub-communities) in different areas.

In this paper, we propose NONCLUS, a robust and flexible
multi-network clustering method that allows multiple under-
lying clustering structures. Our contributions are summa-
rized as follows.

e We investigate a new clustering problem in the novel
network setting, NoN, where multiple underlying clus-

tering structures can co-exist among domain-specific
networks. It generalizes the single clustering struc-
ture assumption of the existing multi-view and multi-
domain clustering methods and has wider applicability
in many emerging real-life problems.

e We develop a novel two phase clustering framework,
NoNCvrus, which can simultaneously cluster domain-
specific networks with the guidance from the main net-
work. NONCLUS allows partial mapping across differ-
ent sized domain-specific networks, which is more gen-
eral and realistic than the multi-view setting. We also
provide rigorous theoretical analysis of NONCLUS in
terms of its correctness, convergence and complexity.

e We perform extensive experiments on both synthetic
and real-life datasets to evaluate the effectiveness of
the proposed method.

The rest of the paper is organized as follows. Sec. 2 is the
related work. Sec. 3 formulates the problem. Sec. 4 presents
NoNCLus and its theoretical analysis. Sec. 5 presents the
experimental evaluations. Sec. 6 gives concluding remarks.

2. RELATED WORK

The existing multi-network clustering methods are mostly
developed for multi-view networks [37, 20, 19]. In multi-view
clustering, views can be networks [37, 20, 19] or data-feature
matrices [1, 23, 35]. Ensemble clustering [30, 12, 13] is re-
lated to multi-view clustering, where a consensus clustering
is obtained by applying the same clustering algorithm on
different views or applying different clustering algorithms on
the same view. All these methods assume different views are
compatible and share the same underlying clustering struc-
ture. Moreover, they are usually designed for views with the
same set of data objects and the same number of clusters.

Several methods [33, 11, 22] extend the traditional multi-
view clustering to allow incomplete views. The method in
[33] requires at least one view to be complete. The method
in [11] focuses on constrained clustering where a set of must-
link and cannot-link constraints are needed. The two-view
NMF based model proposed in [22] may suffer efficiency
problem when applied to multi-view scenario due to its pair-
wise regularization between views. A recent work on multi-
domain graph clustering [8] allows flexible network sizes and
number of clusters. This method also uses pairwise regu-
larization between domains thus may have efficiency prob-
lem. In contrast to [22] and [8], our method allows efficient
regularization by centroid matrices. More importantly, the
methods in [33, 11, 22, 8] have the same single underlying
clustering structure assumption as other multi-view cluster-
ing methods do.

Tensor factorization methods [17, 16] can be applied to co-
cluster multiple matrices [32, 14]. However, the existing ten-
sor factorization methods, such as CP and Tucker decompo-
sitions [16], are not designed for graph data where two modes
of the tensor are symmetric. Furthermore, when applied to
cluster multi-view graphs, tensor factorization methods also
have the limitation that all views must have the same size
and share a single underlying clustering structure.

3. THE PROBLEM

We first introduce the definition of a network of networks.
The main symbols used in this paper are listed in Table 1.



Table 1: Main symbols

[ Symbol | Meaning |
G the g X g main network
A® the i*" domain-specific network
u® the factor matrix of A®
v the j*" hidden factor matrix
o the mapping matrix between U® and V&
D) the mapping matrix D) = Q) Q)
g the number of nodes in the main network
n; the number of nodes in A®
k the number of main clusters
t; the number of domain clusters in A
A domain-specific networks A = {A™ ... A}
Y@ the set of nodes in A®
R a network of networks R =< G, A >

DEFINITION 1. A Network of Networks (NoN) is de-
fined as R =< G, A >, where G is the g X g main net-
work, A = {AW, ..., A9} is a set of g domain-specific
networks. Node i (i = 1,...,g) in the main network G cor-
responds to domain-specific network A .

We refer to the nodes in the main network and domain-
specific networks as the main nodes and domain nodes re-
spectively. We use V¥ to represent the set of domain nodes
in domain-specific network A(i), and Z(7) to represent the
cczn)lmon nodes between A® and A ie., 709 = Y& N
v,

For example, in Figure 1, the dashed network is the main
network G, which has six main nodes {4, B, C, D, E, F}.
Each of these main nodes corresponds to a domain-specific
network (the solid network). The main node A corresponds
to the domain-specific network with nine domain nodes {1,
3, 4, 5, 7,9, 10, 11, 18}. The common nodes between
domain-specific networks of A and B are {1, 3, 4, 5, 7, 9,
10, 11}.

We refer to the clusters in the main network and domain-
specific networks as the main clusters and domain clusters,
respectively. For example, in Figure 1, there are two main
clusters {A, B, C} and {D, E, F}. In the domain-specific
network B, there are three domain clusters {1, 4, 11, 12},
{2, 7, 10} and {3, 5, 9}.

Our goal is to partition the domain-specific networks while
respecting the clustering structure in the main network. More
formally, let H = {#i,..., Hr} be a partition of the main
network, we want to find ¢ = {C™,...,C¥}, the collec-
tion of partitions of all domain-specific networks, where C¥
(i=1,...,9) is a partition of domain-specific network AD)
with respect to the main clusters in H. Note that in this
paper, we focus on finding non-overlapping clusters. This
is also the goal of the existing multi-view and multi-domain
graph clustering methods [37, 20, 19, 8, 33].

4. THE NONCLUS ALGORITHM

Our NONCLUS method clusters a NoN using a two-phase
approach. In Phase I, we partition the main network. To
partition the domain-specific networks, in Phase II, we de-
velop a regularized non-negative matrix factorization (NMF)

clustering method, which respects the clustering information
obtained in Phase I.

4.1 Main Network Clustering

In Phase I, we treat the main network clustering prob-
lem as a single network clustering problem. We adopt the
widely used non-negative matrix factorization (NMF) ap-
proach [21]. In particular, we use the symmetric version of
NMF (SNMF) [10, 18] to partition the main network, which
minimizes the following objective function

Ju = |G — HH'|% (1)

where || - |7 is the Frobenius norm and H € ]RiXk is the
factor matrix of the main network. An element h;; of H
indicates to which degree main node i belongs to the j**
main cluster. We solve Eq. (1) using the method in [10]:

H<—Ho<1—ﬁ+ﬂ%) (2)

o and H are element-wise operators and 0 < 8 < 1 is a
parameter which is suggested to be set to 0.5 in practice.

4.2 Domain-specific Network Clustering

In Phase II, we incorporate the main cluster information
to cluster domain-specific networks. We first consider a sim-
ple case, where every domain-specific network has a set of n
nodes and ¢ clusters. Note that in general, different domain-
specific networks may have different number of nodes and
clusters.

4.2.1 The Simplified Case

For any domain node z, let ul) € RV (i = 1,..,9)
represent its domain cluster assignment vector in AD . We
assume that domain-specific networks in the same main clus-
ter share a common underlying clustering structure. Since
there are k main clusters {#ai, ..., Hx }, for domain node z,
we introduce k hidden domain cluster assignment vectors
vi) e Ry (j = 1,...,k) to regularize ul). If AD pe-
longs to main cluster H;, we want to minimize the clus-

ter assignments inconsistency between u(;*) and vgf*), ie.,

s — vE2|I%.

Furthermore, recall that h;; denotes the strength of the
main cluster membership. For domain node x, we can collec-
tively penalize the inconsistencies between its domain cluster
assignment vectors and hidden domain cluster assignment

vectors by minimizing

g k
Jo =33 hisllul — v % (3)

i=1 j=1

Note that if two domain-specific networks A® and A(®
have high h,; and hg; values, i.e., they are likely to belong to

the same main cluster H;, the inconsistency between clus-
ter assignments u(z’i) and uE;Q of node z will be penalized
through V;Q. This is intuitive since if A® and A@ are in
the same main cluster, the clustering structures of A® and

A ghould be similar.



Generalizing Eq. (3) to all domain nodes, we have the
following objective function:

~ min Jp =
u® >0 (i=1,...,9)

g
STIAY —u WOy |E
. =1
v >0 (j=1,...k)

domain—specific network clustering

g k
+a D> hy U - VIR

i=1 j=1

main cluster guided regularization

In Eq. (4), U € R?*" is the factor matrix of A®, and
AVAS2NC ]Ri” represents the underlying clustering structure
of domain-specific networks in main cluster #;. In the next,
we refer to V9 as the j** hidden factor matriz.

4.2.2 The General Case

In general, the domain-specific networks may have dif-
ferent node sets and sizes. To generalize the basic model
discussed in the previous section, we allow factor matrix
U™ to have different number of rows (nodes) for different
domain-specific networks. We further allow hidden factor
matrix V) to contain all nodes in the domain-specific net-
works that belong to main cluster H;. That is, the set of
nodes in V& is V&) = JV@ (i € H;). Thus VIV, . v*)
also have different number of rows (nodes).

Furthermore, different domain-specific networks may share
some common nodes. For example, a gene may be expressed
in multiple tissues; a user may have accounts in multiple so-
cial networks. Let n; = [V | and 71; = |V‘(,j)|. We introduce
mapping matrices 07 ¢ Ri’ixn’, such that O (z,y) =1
if the z** row of U® and the y** row of VU represent
the same data object; O (z,y) = 0 otherwise. Note that
each row of O has at most one 1 because of the one-
to-one relationship between the common nodes in different
domain-specific networks.

Since not all nodes in A have corresponding rows in
v ), we also introduce the diagonal mapping matrices D@ ¢
R'7 %" such that D) (z,x) = 1 if the 2" row of U has a
corresponding row in V0, D(ij)(x,m) = 0 otherwise. Note
that D) = O(ij)(o(ij))/.

Next, we further generalize our method to allow domain-
specific networks to have different number of clusters. If h;;
is large, i.e., strong main cluster membership, we want the
same rows in D@ U® and OV to be similar, since
they denote the cluster assignments for the common nodes.
However, different number of clusters will result in different
number of columns in U® and V. This makes the direct
inconsistency penalty of domain clusters in the simple case
Eq. (4) no longer applicable. We address this issue by taking
an indirect regularization.

Let U@ = DEIU® and V@ = 0DV Consider
two nodes z and y in A® that have similar cluster assign-
ments a7 and ﬁgfﬁ )If hi; is large, their corresponding
cluster assignments \A/Sf ) and \A/g(f,f ) should be similar. For
example, in Figure 1, if nodes 1 and 3 have similar cluster
assignments in domain-specific network D, their cluster as-
signments in the underlying clustering structure shared by
{D, E, F} should be similar as well. We measure cluster
assignment similarity by their inner product, and minimize

the inconsistency (a\? (a'7)) — ¢ (9(7)))2,

Summing up the inconsistencies over all domain nodes, we
have the following objective function that allows partially
aligned domain-specific networks to have different sizes and
number of clusters:

g g k
min Jp = Ja+a hiiJr
UM >0 (i=1,...,9) ; ;; Y (5)
v >0 (j=1,...k)

where

Ja =AY —UuOWy %

Jr = Z Z(ﬁ(zif)(ﬁg(ﬁ))/ _ {,gig)({,éig))/)z

r=1y=1
_ H(D(ij)U(i))(D(ij)U(i))/ _ (O(iﬂ')v(j))(O(ij)v(j))’H%

In Eq. (5), a is a regularization parameter for the relative
importance between the domain-specific network clustering
and the main cluster guided regularization. Intuitively, the
more reliable the main network, the larger the value of a.

Discussions: The existing NMF based multi-view clus-
tering methods either assume a single shared factor matrix
among all views [1] or regularize all factor matrices towards
a single centroid factor matrix [23]. In contrast, NONCLUS
introduces multiple hidden factor matrices to differentially
regularize domain-specific clusters guided by the main clus-
ters. If there is only one main cluster, NONCLUS degen-
erates to a multi-view graph clustering method. Moreover,
NoNCvLus allows different network sizes and number of clus-
ters among domain-specific networks. Therefore, NONCLUS
can be viewed as a generalization of the existing multi-view
graph clustering methods to different sized networks with
multiple underlying clustering structures.

4.3 Learning Algorithm

Since the objective function Eq. (5) is not jointly convex,
we optimize it by an alternating minimization approach, i.e.,
the objective function is alternately minimized with respect
to one variable while fixing others. This procedure repeats
until convergence.

Theorem 1 in the following gives the solution of U™ (1 <
7 < g) when fixing other variables. Theorem 2 gives the
solution of V(™ (1 < 5 < k) when fixing other variables.

THEOREM 1. Updating U™, When other variables are
fized, updating U according to Eq. (6) monotonically de-
creases Eq. (5) until convergence. At convergence, the solu-
tion is a KKT fixed point.

AOUD 4ok b WU ) 1
UM(UO)YUD +aY k| hey YD)

U U™ o (
(6)
where
W) — (D(Tj))/(O(TJ')V(J'))(O(TJ')V(J'))/D(TJ')
vy () — (D(Tj))’D(TJ)U(T)(U(T))’(D(Tj))/D(TJ)U(T)
THEOREM 2. Updating V. When other variables are
fized, updating v according to Eq. (7) monotonically de-

creases Eq. (5) until convergence. At convergence, the solu-
tion is a KKT fixed point.

9 B QUEMVMN\ 1
() (n) Zi:l hinQ""'V
v “v ° ( Ef:l hinR(i") (7)




LEMMA 1. [21] If Z is an auziliary function for J, then J

Algorithm 1: NONCLus
is non-increasing under the update h**?) = arg min Z(h, h(t)).
h

Input: (1) a network of networks R =< G, A >; (2) the
mapping matrices {009} and {D()}; (3) the
number of main clusters k; (4) the number of domain
clusters in {A(®} and {V)}; (5) the parameter a

Output: a collection of partitions C = {C(1),...,C(9)} of all

domain-specific networks

Theorem 4 gives the auxiliary function for the objective
function Eq. (5) w.r.t. U™,

THEOREM 4. Auxiliary function of J(U(™). Let J(U™)

1 Normalize G, A(®) (i = 1, ..., g) by Frobenius norm; denote the sum of all terms in Eq. (5) that contains um,
2 Phase I: then the following function
3 Initialize H with random values within (0, 1];
4 repeat - ~ ()~ U(T)Ug‘r)
5 | Update H by Eq. (2); Z(U(T)vU(T)) = *22 A%)Uz(?q)US“Z) (1 + log %)
6 until Convergence par Upq' Urg
7 Normalize H by H + D' H; L _ Uy (U4
8 Phase II: + Z(U(T) (U(T))/U(T))Pq (.L) ta Z hrj ZY;,(,ZJ) &L)
(U(T))S - (U(T))S
9 for 7+ 1 to g do Pq Pq J Pq Pq
10 | Initialize U(™) with random values within (0,1]; o _ U(T)U(T)
11 end —2a Z hej Z WL;])UI(’Z)U(TZ) (1 +log %)
12 for n <+ 1 to k do J par Up‘; U,«Z
13 Determine the size of V(") based on main cluster (8)

14
15

membership of domain-specific networks;
Initialize V(") with random values within (0, 1];
end

16 repeat

17 for 7 < 1 to g do

18 | Update U(™) by Eq. (6);
19 end

20 for n < 1 to k do

21 | Update V(" by Eq. (7);
22 end

23 until Convergence

24 return C = {C(V,...,C(9} based on UD .. U©),

where
Q(iﬂ) — (O(iﬂ))’(D(iﬂ)U(i))(D(iﬂ)U(i))/O(iﬂ)
RN — (O(in))/o(in)v(n)(V(n))/(o(in))/o(in)v(n)

In Eq. (6) and Eq. (7), o, H and ()i are element-wise
operators. Algorithm 1 summarizes our alternating mini-
mization algorithm according to Theorems 1 and 2.

4.4 Correctness Analysis

In the next, we provide theoretical analysis of the updat-
ing rule in Theorem 1. We first prove the correctness of
Eq. (6) according to the Karush-Kuhn-Tucker (KKT) con-
dition [7]. Then we analyze its convergence using the auxil-
iary function approach [21]. The proofs for Theorem 2 are
similar and omitted here.

THEOREM 3. Correctness of Eq. (6). At convergence,
the solution found by updating U™ according to Eq. (6) is
a KKT fixed point.

PROOF. Omitted for brevity. The formal proof can be
found in an online Supplementary Material®>. [

4.5 Convergence Analysis
Next we prove the convergence of Eq. (6) using the auxil-
iary function approach [21].

DEFINITION 2. [21] A function Z(h,h) is an auxiliary
function for a given function J(h) if the conditions Z(h,h) >
J(h) and Z(h,h) = J(h) are satisfied.

http://filer.case.edu/jxn154/NoNClus

where
W) — (D(Tj))/(O(TJ')V(J'))(O(TJ')V(J'))/D(TJ')
Y09 = (DY DGO (GO (DY DEHD
is an auziliary function for J(U(T)). It is also a convex

function in UT) and its global minimum is

1

AOTD 4 a ¥k b WEDTO ) 1
U (UOYTe) + QE§:1 hy Y (73)

U — 0™ 6 (

)
PROOF. Omitted for brevity. The formal proof can be
found in the Supplementary Material. [

Next we show the convergence of updating U™ by Eq. (6)
in Theorem 5.

THEOREM 5. Convergence of Eq. (6). When other
variables are fized, updating um according to Eq. (6) mono-
tonically decreases Eq. (5) until convergence.

PRrROOF. According to Definition 2, Lemma 1 and The-
orem 4 (note Eq. (9) is consistent with Eq. (6)), at any
iteration x > 0 during updating U™, we have

J((U(T))(n)) _ Z((U(T))(n)’ (U(T))("“))
> Z((UOYEED ()Y ®)y > g((u) =)

where (U(™)) denotes the updated U™ at x'" iteration.
Thus J(U(T)) monotonically decreases. Since the objective
function Eq. (5) is bounded below by 0, the updating of U™
will converge. [

Similarly, Theorem 2 can be proved. Therefore, alter-
nately updating U™ and V(™ by Eq. (6) and Eq. (7) mono-
tonically decreases Eq. (5) until convergence and the sta-
tionary point is a KKT fixed point, which guarantees the
correctness and convergence of Algorithm 1.

4.6 Complexity Analysis

Let N be the maximal number of nodes in any domain-
specific network. There can be at most N non-zero entries in
0#) and D) (i=1,..,9,7 =1,...,k) because of the one-
to-one mapping between common nodes in different domain-
specific networks. In practice, AV, ..., A9 and G can be
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Figure 2: Synthetic dataset generation

sparse. Let M and m be the maximal number of non-zero
entries in any A and G, respectively. Let T be the maxi-
mal number of clusters in any A®.

Based on Eq. (6) and Eq. (7), updating each U™ and
VO require O(MT + kNT?) and O(gNT?) time, respec-
tively. Thus the overall time complexity of Algorithm 1
is O(In(mk + gk?) + Is(¢gMT + gkNT?)) considering both
Phase I and Phase II, where I,,, and I are the total number
of iterations before the convergence of Phase I and Phase II,
respectively. Moreover, I,,, g, m and k are usually much
smaller than Iy, N, M and 7T, respectively. T is much
smaller than N, and k can be regarded as a small constant.
Therefore, the actual time complexity can be denoted as
O(Iqg(MT + NT?)). The experimental results show that
the our algorithm is almost linear with respect to M.

S. EXPERIMENTAL RESULTS

In this section, we evaluate NONCLUS on synthetic and
real-world datasets and compare it with the state-of-the-art
multi-view and multi-domain graph clustering methods.

5.1 Effectiveness Evaluation

5.1.1 Simulation Study

We first evaluate our method using synthetic datasets. We
generate a main network containing three main clusters with
sizes 3, 3, 4 as shown in Figure 2(a). The domain-specific
networks are generated as follows. We first generate an un-
derlying domain-specific clustering structure for each main
cluster. Figure 2(b) shows an example containing five clus-
ters of the same size, where non-zero entries are set to 1.
Then domain-specific networks are generated from each un-

derlying clustering structure. To embed noise, we randomly
flip o (0 < a < 1) fraction of 1 entries in the matrix to 0
and 8 (0 < B8 < 1) fraction of 0 entries to 1. An example
is shown in Figure 2(c) with @ = 80% and 8 = 5%. To
generate domain-specific networks with different sizes, we
randomly remove or add ¢ fraction of nodes in the previous
matrix. ¢ follows normal distribution with mean p and stan-
dard deviation o and its value is set between 0 and 1. An
example with 215 domain nodes generated by p = 0.3 and
o = 0.05 is shown in Figure 2(d).

Using the above approach, we generate two different types
of synthetic datasets. In the first dataset, all three underly-
ing clustering structures contain 5 clusters, and all domain-
specific networks have the same set of 200 nodes. a and S
are set to 80% and 5% respectively to simulate noise. We re-
fer to this dataset as the SynNoN-view dataset. This dataset
is used to evaluate the multi-view graph clustering methods,
since they assume all views have the same size.

In the second dataset, the three underlying clustering struc-
tures contain 5, 6, 7 clusters, and 200, 300, 350 nodes, re-
spectively. They share 100 common nodes. The domain-
specific networks are generated with o = 80%, 8 = 5%,
p = 0.3 and 0 = 0.05. We refer to this dataset as the
SynNoN-dom dataset. This dataset is used to evaluate the
multi-domain graph clustering methods, which allow differ-
ent domain sizes.

We compare NONCLUS with several state-of-the-art clus-
tering methods, including (1) Symmetric NMF (SNMF') [18];
(2) spectral clustering (Spectral) [29]; (3) multi-view co-
training spectral clustering (CTSC) [19]; (4) multi-view pair-
wise co-regularized spectral clustering (PairCRSC) [20]; (5)
multi-view centroid-based co-regularized spectral clustering
(CentCRSC) [20]; (6) Tensor Factorization (TF) [16]; and
(7) multi-domain co-regularized graph clustering (CGC) [8].

Note that the SNMF and spectral clustering methods can
only be applied to a single network. CTSC, PairCRSC and
CentCRSC are multi-view graph clustering methods and can
only be applied on the SynNoN-view dataset. For TF, we
test both CP and Tucker decompositions [16] and use three
different strategies to assign a data object to a cluster: (1)
the highest value in a row of the factor matrix; (2) the high-
est absolute value in a row of the factor matrix [32]; and (3)
applying k-means [25] on the factor matrix. The best results
are reported. Note that TF is similar to multi-view meth-
ods thus can only be applied on the SynNoN-view dataset.
Moreover, TF does not distinguish individual networks and
only gives an overall clustering result of all nodes. CGC is
a recent multi-domain graph clustering method that can be
applied on the SynNoN-dom dataset. The common node
relationships between different domain specific networks are
used as the cross-domain relationships in CGC.

Table 2 shows the averaged accuracy of different meth-
ods over 500 runs. The parameters are tuned for optimal
performance of all methods. It can be seen that NONCLUS
achieves better individual and overall performance compared
to other methods on both datasets. The multi-view/domain
methods, CTSC, PairCRSC, CentCRSC, TF and CGC as-
sume a single underlying clustering structure. In contrast,
NoNCvrus allows more flexible underlying clustering struc-
tures. This demonstrates that utilizing domain similarity
network can dramatically improve the accuracy.

Next, we study a degraded version of NONCLUS, which
assumes that all domain-specific networks share the same



Table 2: Accuracy of different methods on synthetic datasets

Dataset Method Main cluster 1 Main cluster 2 Main Cluster 3

Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8 Net 9 Net 10 Overall

SNMF 0.8751 0.8716 0.8735 0.8796 0.8732 0.8754 0.8722 0.8690 0.8682 0.8746 0.8732

Spectral 0.8587 0.8586 0.8675 0.8619 0.8571 0.8624 0.8626 0.8582 0.8583 0.8622 0.8607

CTSC 0.6249 0.6258 0.6279 0.6221 0.6236 0.6196 0.9157 0.9118 0.9106 0.9181 0.7400

view PairCRSC 0.9166 0.9174 0.9227 0.9186 0.9176 0.9173 0.9355 0.9335 0.9378 0.9353 0.9252

CentCRSC 0.9050 0.9031 0.9090 0.9021 0.9090 0.9077 0.9391 0.9408 0.9342 0.9378 0.9188

TF — - — - — - — - — — 0.6505

CGC 0.6364 0.6337 0.6407 0.6385 0.6273 0.6316 0.7332 0.7365 0.7251 0.7210 0.6724

NoNCLus 0.9444 | 0.9403 | 0.9463 0.9447 | 0.9435 | 0.9418 0.9617 | 0.9621 | 0.9643 | 0.9629 0.9512

SNMF 0.6584 0.6687 0.6583 0.7123 0.7063 0.7129 0.6558 0.6596 0.6620 0.6630 0.6787

dom Spectral 0.5554 0.5618 0.5556 0.5799 0.5768 0.5811 0.5167 0.5188 0.5241 0.5242 0.5490

CGC 0.7303 0.7297 0.7229 0.7992 0.7962 0.7965 0.7859 0.7840 0.7837 0.7876 0.7797

NoNCLus 0.7882 | 0.7960 | 0.7914 0.8649 | 0.8650 | 0.8654 0.8409 | 0.8363 | 0.8367 | 0.8389 0.8388
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Figure 3: Clustering accuracy with different number
of networks when all networks share a single com-
mon underlying clustering structure

underlying clustering structure, but allows different sized
domain-specific networks. We refer to this degraded version
as NONCLus’. As discussed in Sec. 4.2.2, NONCLUS’ has
the same assumption as the multi-view clustering methods
and can be treated as a generalization of these methods on
different sized networks.

We generate multiple domain-specific networks with dif-
ferent sizes sharing the same underlying clustering structure
by setting o = 80%, 8 = 5%, p = 0.3, 0 = 0.05. Note that
the multi-view graph clustering methods cannot be applied
to this dataset. Figure 3(a) shows the accuracy when vary-
ing the number of domain-specific networks. All results are
averaged over 500 runs. It can be seen that NONCLUS’ is
effective in incorporating information from multiple domain-
specific networks. It performs better than single network
clustering methods and is similar to CGC on this dataset.

We also generate domain-specific networks with the same
size by setting a = 80%, 8 = 5%, u = 0, 0 = 0, so that the
multi-view graph clustering methods can be applied. Fig-
ure 3(b) shows the results on this dataset (CTSC and TF
requires at least two views to run). From the results, we
can observe that NONCLUS’ is comparable to the multi-view
methods when applied to networks of the same size but is
more general than them. Also, NONCLUS’ is similar to the
multi-domain method CGC. Note that CGC uses a pairwise
regularization. NONCLUS’ utilizes a centroid regularization,
thus is more efficient than CGC (see Sec. 5.2). Because of
its competitive performance and efficiency, in the following,
we use NONCLUS’ as an alternative to multi-view/domain
graph clustering methods for datasets with different-sized
domain-specific networks.

0O 0.1 0203040506070809 1
Common node ratio

(b) Overall NMI
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Figure 4: Clustering performance on 20-Newsgroup
dataset with various rate of common nodes

5.1.2  20-Newsgroup Dataset

We further evaluate the effectiveness of NONCLUS using
20-Newsgroup dataset®. Following a similar approach as in
[9], we preprocess the data by removing stop words, ignoring
headers and subject lines. For each newsgroup, we select the
top 2000 words using the mutual information based feature
selection method.

We use 12 news groups of three categories, Comp, Rec and
Talk*, corresponding to three underlying clustering struc-
tures, each with four clusters (news groups). In this study,
we generate 10 domain-specific networks from each category.
Each domain-specific network contains randomly sampled
200 documents from the 4 news groups (50 documents from
each group) in a category. The affinity matrix of documents
is computed based on cosine similarity. The main network is
generated by the cosine similarity between the overall word
frequencies of domain-specific networks. As a result, the
main network contains 30 main nodes forming three main
clusters corresponding to the three categories. Each main
node corresponds to a domain-specific network.

The common nodes in different domain-specific networks
are generated as follows. For any two domain-specific net-
works generated from the same underlying clustering struc-
ture, a document in one domain-specific network is randomly
mapped to a document with the same cluster label (e.g.,
comp.graphics) in another domain-specific network. For any
two domain-specific networks generated from different un-

3http://qwone.com/%7Ejason /20Newsgroups/

Comp: comp.graphics, comp.os.ms-windows.misc, comp.
sys.ibm.pc.hardware, comp.sys.mac.pc.hardware; Rec: rec.
autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey;
Talk: talk.politics.guns, talk.politics.mideast, talk.politics.
misc, talk.religion.misc.
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Figure 6: Running time evaluation

derlying clustering structures, the documents are randomly
mapped with one-to-one relationship. We vary the ratio of
common nodes, 7, from 0 to 1 to evaluate its effect.

The clustering performance is evaluated using both purity
accuracy and normalized mutual information (NMI) accord-
ing to the labels provided in the dataset. Since multi-view
clustering methods CTSC, PairCRSC, CentCRSC and TF
cannot be applied on networks with partial common nodes,
NoNCLUs’ is used as a generalization of the multi-view clus-
tering methods. Also, single network clustering methods
SNMF and Spectral clustering (Spectral) are performed on
individual domain-specific networks. The widely used k-
means method [25] is also selected as a baseline method in
this comparison. It is applied on the original document-word
matrix instead of the network data.

Figures 4 shows the average accuracy and NMI on all
domain-specific networks when varying n. All results are av-
eraged over 100 runs. As can be seen from the figures, NON-
CLus becomes better than SNMF when there are around
40% common nodes. NONCLUS’ performs worse than NON-
CLus and does not obviously increase the accuracy over
SNMEF. This is because NONCLUS’ cannot handle multiple
underlying clustering structures. The results demonstrate
that NONCLUS can effectively improve the accuracy with a
small number of common nodes among different networks.

5.2 Performance Evaluation

In this section, we evaluate NONCLUS in terms of its sen-
sitivity to the regularization parameter a and its scalability.
The evaluation of its convergence property can be found
in the Supplementary Material. The datasets used include
SynNoN-view, SynNoN-dom and 20-Newsgroup.

Figure 5 shows the clustering accuracy and NMI when
varying a. The results of single network clustering methods
are used as references. The accuracy and NMI are averaged
over 100 runs. We observe that NONCLUS is not sensitive
to the regularization parameter a. The accuracy and NMI
increase as a increases and become stable after a > 1.

Table 3: Tissue-specific gene co-expression networks

Tissue-specific network || # nodes | # edges
Blood 633 2,573
Lymph node 648 2,256
Tonsil 682 2,480
Thymus 786 2,939
Brain 746 3,135
Caudate nucleus 640 2,578
Hypothalamus 641 2,500
Cerebellum 679 2,636

Total 5,455 21,097

Figure 7: Tissue-tissue similarity network (the main
network in NoIN)

Next, we evaluate the efficiency of NONCLUS using the
SynNoN-view dataset. Other multi-view/domain graph clus-
tering methods are also evaluated as references (CTSC is
omitted since it does not guarantee convergence). The ex-
periments are performed on a 2.10GHz machine with 48GB
memory. The reported results are averaged over 10 runs.

Figure 6(a) shows the running time when varying the
size of the domain-specific networks. There are 6 domain-
specific networks. The network size is measured by the to-
tal number of edges in all domain-specific networks. Figure
6(b) shows the running time when varying the number of
domain-specific networks. There are 2,500 nodes in each
network. We omit some results of PairCRSC, CentCRSC
and CGC because of their high memory or running time
costs. As can be seen, the running time of NONCLUS is
almost linear w.r.t. the size and number of domain-specific
networks. This is consistent with the time complexity anal-
ysis in Sec. 4.6. In addition, NONCLUS is faster than other
methods since PairCRSC and CGC require pairwise regular-
izations, and the eigendecomposition process of PairCRSC
and CentCRSC for non-sparse matrices are time and space
consuming. NONCLUS runs faster than NONCLUS’ because
of its faster convergence rate.

5.3 A Case Study of Tissue-Specific Gene Co-
Expression Networks

In this section, we apply NONCLUS on tissue-specific gene
co-expression networks. We use the recently published global
map of human gene expression dataset [24] to generate tissue-
specific gene co-expression networks. The dataset contains
5372 samples for 128 different tissues in four different cell
types, i.e., normal, disease, neoplasm and cell line. Follow-
ing a similar approach as in [5], we consider tissues of normal
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status and experiments with at least five replicates. We se-
lect 8 tissues, i.e., blood, lymph node, tonsil, thymus, brain,
caudate nucleus, hypothalamus and cerebellum to form the
main network. The tissue similarity matrix is constructed
using the pairwise correlation (normalized between [0, 1]) of
the expression data of tissue-specific genes. The main net-
work is shown in Figure 7, which contains two main clusters.

For each tissue, we construct the tissue-specific gene co-
expression network using the gene expression data for that
tissue. We extract genes that are expressed in each tissue
(with expression values greater than 10). The edges in a
gene co-expression network are weighted by the Pearson’s
correlation coefficient (normalized between [0,1]) between
two connected genes. The statistics of the gene co-expression
networks are summarized in Table 3.

We compare NONCLUS with (1) SNMF; (2) Spectral clus-
tering (Spectral); (3) Markov clustering (MCL) [34]; (4)
ClusterOne [27]; and (5) NONCLUS’. MCL has been widely
applied to detect functional modules in biological networks
[3]. ClusterOne can detect overlapping clusters. Its over-
lapping rate is set such that any two clusters of size 5 can
have at most 3 common genes (i.e., match coefficient [27]
0.36). This rate also applies to clusters of other sizes. Note
that multi-view clustering methods cannot be applied be-
cause of the different network sizes. We use NONCLUS’ as
an alternative.

The clustering performance are evaluated using the stan-
dard Gene Set Enrichment Analysis (GSEA) [31]. The most
significant Gene Ontology (GO) term in the biological pro-
cess category [2] is assigned to each identified gene cluster
(we evaluate clusters with sizes at least 5). The significance
is assessed by Hypergeometric distribution [3]. Raw p-values
are adjusted for multiple testing [36] by False Discovery Rate
(FDR) [4].

We first assume that all gene co-expression networks have
the same number of clusters. If a method needs initializa-
tion, we run it with 10 random initializations and report the
optimal performance. Figure 8(a) shows the total number
of significant clusters detected in all gene co-expression net-
works w.r.t. the input number of domain clusters. As we
can see, for the methods that need input cluster number, the
best performance occurs when the number of clusters is set
to 70. Before that, all methods perform similarly because
of the limited numbers of clusters. After that, NONCLUS is
more stable than NONCLUS’, since NONCLUS allows multi-
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Table 4: Number of significant clusters

Method # significant clusters | p-value
SNMF 116 464 x10°°
Spectral 119 6.66 x 1073
MCL 70 6.45 x 10717
ClusterOne 89 1.43 x 10710
NoNCLus’ 121 4.87 x 1072
NoNCLus 130 1

ple underlying clustering structures. NONCLUS also detects
more significant clusters than other methods do.

Next we present the results of the selected methods when
their parameters are tuned for their optimal performance. In
particular, the numbers of domain clusters for NONCLUS’
and NONCLUS can be tuned by using the optimal values
individually given by SNMF or spectral clustering. In this
experiment, they are around 70.

The p-values of detected clusters are shown in Figure 8(b).
The clusters are sorted in ascending order of their p-values.
We observe that the clusters detected by NONCLUS are more
significant than those identified by other methods.

Table 4 shows the number of significant clusters identified
by different methods using a significance threshold 0.05. It
can be seen that NONCLUS detects more significant clusters
than other methods do. For each alternative method, we
further perform the two-sample t-test on the p-values of the
155 most significant clusters detected by that method and
those by NONCLUS. The significance of the test results are
reported in the third column of Table 4. Clearly, NONCLUS
performs significantly better than other methods.

The reason for the better performance of NONCLUS is
that the gene co-expression networks are very noisy. Single
network clustering methods can be sensitive to these noises.
Utilizing common clustering structure shared by similar tis-
sues can help improve the robustness of the method. On the
other hand, the same set of genes forming a cluster in sim-
ilar tissues may not form a cluster in dissimilar tissues. In
particular, there are some housekeeping genes that are uni-
versally expressed in different tissues. These genes achieve
their functions in different tissues by interacting with genes
that are tissue specific. These tissue specific genes are ex-
pressed only in some tissues but not in others [6]. Thus
it is more reasonable to distinguish different tissue (main)



clusters when integrating multiple tissue specific gene co-
expression networks.

6. CONCLUSION

Clustering multiple networks has been widely recognized
as promising to improve graph clustering performance. Ex-
isting multiple network clustering methods, such as multi-
view/domain graph clustering, assume a single underlying
clustering structure is shared among all networks. In this
paper, we propose a new clustering framework that clusters
multiple domain-specific networks sharing multiple underly-
ing clustering structures. We model domain similarity as a
main network where main nodes represent domain-specific
networks and formulate the clustering problem on this novel
network of networks (NoN) setting as a two phase regular-
ized optimization problem. We develop NONCLUS to solve
this problem and provide rigorous theoretical analysis con-
cerning its correctness, convergence and complexity. Exper-
imental results on both synthetic and real-world datasets
demonstrate the effectiveness of NONCLUS.
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