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ABSTRACT
Networks are prevalent and have posed many fascinating research
questions. How can we spot similar users, e.g., virtual identical
twins, in Cleveland for a New Yorker? Given a query disease, how
can we prioritize its candidate genes by incorporating the tissue-
specific protein interaction networks of those similar diseases? In
most, if not all, of the existing network ranking methods, the nodes
are the ranking objects with the finest granularity.

In this paper, we propose a new network data model, a Network
of Networks (NoN), where each node of the main network itself
can be further represented as another (domain-specific) network.
This new data model enables to compare the nodes in a broader
context and rank them at a finer granularity. Moreover, such an
NoN model enables much more efficient search when the ranking
targets reside in a certain domain-specific network. We formulate
ranking on NoN as a regularized optimization problem; propose
efficient algorithms and provide theoretical analysis, such as op-
timality, convergence, complexity and equivalence. Extensive ex-
perimental evaluations demonstrate the effectiveness and the effi-
ciency of our methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing

Keywords
Network of Networks; Ranking; Query

1. INTRODUCTION
How can we spot similar users, e.g., virtual identical twins, in

Cleveland for a New Yorker? Given a disease, how can we priori-
tize its candidate genes by incorporating the tissue-specific protein
interaction networks of those similar diseases? Among all the re-
searchers in the area of bioinformatics, who is most likely to col-
laborate with a given data miner in the near future? In these ap-
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Figure 1: An example of NoN. The main network is represented
by dashed nodes and edges. The domain-specific networks are
represented by solid nodes and edges.

plications, networks (or graphs1) provide a natural data model to
capture the relationship among different objects.

In the past decade, many graph ranking algorithms have been
proposed. Please see Section 6 for a brief review. Despite their own
success, a common limitation of these methods is that ranking stops
at the node (atom) level. That is, the nodes are the ranking objects
with the finest granularity in these existing ranking algorithms.

In this paper, we take one step further and propose a new data
model - a Network of Networks (NoN). In this NoN model, each
node of the main network can be represented as another network.
Let us elaborate using the example in Figure 1. Here, the dashed
network represents a geo-proximity network (the main network),
where the nodes are five different cities and links indicate the geo-
proximity among different cities. Each node of this main network
is further represented as a social network (the domain-specific net-
work), where nodes are users and links denote their friendship.
Collectively, we call this structure as a (geo-proximity) network
of (social) networks.

The main advantage of this new NoN model is that it enables to
compare the nodes in a broader context and rank them at a finer
granularity. Take Figure 1 as the example, using the existing net-
work models, we could either rank the geo-centrality of the cities,
or the popularity of the users within each domain-specific network.
On the other hand, by the NoN model, we will be able to rank all
the users by considering both their popularity within each domain-
specific network as well as the geo-centrality of the locations they
belong to. We refer to this setting as CROSSRANK. Moreover, we

1In this paper, we use network and graph interchangeably.



Table 1: Symbols
Symbol Definition
G the adjacency matrix of main network
A domain specific networksA = {A1, ...,Ag}
Ai the ith domain specific network
θ the one-to-one mapping function
R a network of networks R =< G,A, θ >
ri the ranking vector for Ai

ei the ith query vector for Ai

In an n × n identity matrix
Ii j the set of common nodes between Ai and A j

dm(i) the degree of the ith node in G
Dm the degree matrix: Dm = diag(dm(1), ..., dm(g))
g the number of nodes in the main network
ni the number of nodes in Ai, (i = 1, ..., g)
mi the number of edges in Ai, (i = 1, ..., g)
c, a the parameters 0 < c < 1, and a > 0

might be interested in finding who are the most similar from New
York City for Jon from Cleveland, i.e., who are the virtual identity
twins of Jon in New York City. In this case, the ranking targets
reside in a certain domain-specific network. We refer to this setting
as CROSSQUERY. The NoN model will enable much more efficient
search for this problem.

The NoN model can be observed in many real-world applica-
tions. As another example, consider a NoN, where each node in
the main network is a research area, and the domain-specific net-
works are the co-author networks in different areas. By the NoN
model, we can rank authors according to their contributions to mul-
tiple areas using CROSSRANK; and find future collaborators for a
researcher in a different area using CROSSQUERY.

The main contributions of this paper can be summarized as:

• New Data Model. We propose a novel network data model,
a network of networks, which enables network ranking to go
beyond the atom/node level (Section 2).

• Algorithms and Analysis. We propose two new ranking al-
gorithms (CROSSRANK and CROSSQUERY) in NoN and an-
alyze their optimality, convergence, complexity and relation-
ship with existing ranking algorithms (Section 3 and 4).

• Empirical Evaluations. We perform extensive experiments
on real datasets to validate the effectiveness and efficiency of
the proposed algorithms (Section 5).

2. PROBLEM DEFINITIONS
Table 1 lists the main symbols used throughout this paper. We

use the bold capital letters to denote matrices (e.g., G, A, etc.), the
bold lower cases for vectors (e.g., r) and calligraphic letters for sets
(e.g.,A). In this paper, we consider weighted undirected networks.
We denote the networks by their corresponding weighted adjacency
matrices. For example, a network with g nodes can be denoted by
a g × g adjacency matrix G. The rows/columns of the matrix G
represents the nodes of the network and its non-zero element G(i, j)
measures the link strength from node i to node j. With the above
notations, a network of networks (NoN) can be formally defined as
follows.

Definition 1. Network of Networks (NoN). Given a g×g main
network G, a set of g domain-specific networks A = {A1, ...,Ag}
and a one-to-one mapping function θ, which maps each node in the

main network G to a domain-specific network, a Network of Net-
works (NoN) is defined as the triplet R =< G,A, θ >. Nodes in the
main network are referred to as main nodes, nodes in the domain-
specific networks are called domain nodes. Each main node repre-
sents a domain-specific network through the mapping function θ. In
addition, we represent the nodes in each domain-specific network
asVi(i = 1, ..., g). We define Ii, j as the common nodes between Ai

and A j, i.e., Ii, j = Vi ∩V j.

Take Figure 1 as an example, the dashed network is the main
network G, which has five main nodes, including NYC, Pittsburgh,
Cleveland, Philadelphia, DC. Each of these main nodes is mapped
to a domain-specific network (the solid network). For example, the
main node Pittsburgh is further represented as a domain-specific
network with three nodes, including Jim, Ben, Bob.

Given an NoN R =< G,A, θ >, a fundamental task is to com-
pare and rank the nodes in this network. For instance, we might be
interested in ranking the importance/popularity of the individuals
in each domain-specific network. Further more, given an individ-
ual, e.g., Jim from Pittsburgh, we may also want to find the similar
users from NYC as well as other cities.

We introduce a query vector ei (i = 1, ..., g) for each domain-
specific network, which is an ni×1 nonnegative vector (ni represents
the number of nodes in the domain-specific network). If we are
given a query node of interest from a domain-specific network (e.g.,
Jim from Pittsburgh), we set its corresponding entry ei to 1, and all
other entries to 0. Otherwise, all the entries in ei are set to 1

ni
.

Formally, we define the CROSSRANK problem as follows.

PROBLEM 1. CROSSRANK

Given: (1) an NoN R =< G,A, θ >, and (2) the query vectors ei

(i = 1, ..., g);

Find: ranking vectors ri for the nodes in the domain-specific net-
works Ai (i = 1, ..., g).

In the above definition, when all the query vectors are uniform,
i.e., no query node is given, we essentially want to measure and
rank the global importance of all the domain nodes within each
domain-specific network. On the other hand, if a query node is
given, we essentially want to measure the proximity (i.e., relevance)
from the query node to all the domain nodes within each domain
specific network. Note that in the latter case, sometimes, we might
be interested in ranking domain nodes from a particular domain-
specific network. For instance, given Jim from Pittsburgh, we
might want to find out the top-3 most similar users from NYC. We
call this special case of CROSSRANK as CROSSQUERY, which is
formally defined as follows.

PROBLEM 2. CROSSQUERY

Given: (1) an NoN R =< G,A, θ >, (2) a query node of inter-
est from a source domain-specific network As, (3) a target
domain-specific network Ad, and (4) an integer k;

Find: the top-k most relevant nodes from the target domain-specific
network Ad w.r.t. the query node.

In the next two sections, we give our solutions for CROSSRANK
and CROSSQUERY, respectively.

3. CROSSRANK
In this section, we present our solution to CROSSRANK. We

start with formulating it as a regularized optimization problem, then
present an effective algorithm to solve it, followed by some theo-
retical analysis.



3.1 Optimization Formulation
The basic idea of our method is to formulate CROSSRANK as a

regularized optimization problem by encoding the following three
types of constrains. (1) Within-network smoothness: for a given
domain-specific network Ai, the ranking scores among the neigh-
boring nodes should be somehow smooth. That is, for any two
adjacent nodes x, y on Ai, we want to minimize the difference of
the rank scores between them, i.e., (ri(x) − ri(y))2. (2) Query pref-
erence: the ranking vector ri should also reflect the preference of
the specific query node of interest from the corresponding domain-
specific network. That is, we want to minimize the difference be-
tween the ranking vector ri and the corresponding query vector ei.
(3) Cross-network consistency: for a pair of domain-specific net-
works Ai and A j that are connected with each other by the main
network (i.e., G(i, j) > 0), they may share some common nodes,
i.e., Ii j = Vi ∩ V j is non-empty. In this case, those common
nodes will receive multiple ranking scores (one from each ranking
vector). Intuitively, the ranking scores for the same node should
be consistent across highly similar domain-specific networks. In
other words, we want to minimize the difference between ri(Ii j)
and r j(Ii j). Here ri(Ii j) can be viewed as the projection of the
entire ranking vector ri on the common node set Ii j.

Putting everything together, we have the following regularized
objective function J(r1, ..., rg). The optimal ranking vectors ri (i =
1, ..., g) are those minimize the objective function.

J(r1, ..., rg) = c
g∑

i=1

r′i (Ini − Ãi)ri︸               ︷︷               ︸
within−network smoothness

+ (1 − c)
g∑

i=1

∥ri − ei∥2F︸          ︷︷          ︸
query pre f erence

+ a
g∑

i=1

g∑
j=1

∥
ri(Ii j)√

dm(i)
−

r j(Ii j)√
dm( j)

∥2FG(i, j)︸                                         ︷︷                                         ︸
cross−network consistency

(1)

where ∥ · ∥F denotes the Frobenius norm; Ãi is the symmetrically
normalized adjacency matrix of Ai; and a and c are two regulariza-
tion parameters. Note that the length of different ranking vectors
could be different and all entries of a given ranking vector ri add
up to 1. To make the ranking scores comparable with each other
for the common nodes, we normalize ri(Ii j) and r j(Ii j) by their
corresponding degrees in the main networks, respectively.

Discussions. If we ignore the third term (cross-network consis-
tency) in Eq. (1), we can show that the objective function J(r1, ..., rg)
can be decoupled into g independent terms. Each of these terms be-
comes the same objective function of a popular ranking method on
homogeneous network - random walk with restart (also called man-
ifold ranking, the personalized pagerank, etc.) [33, 26]. From this
perspective, what we essentially aim to do in Eq. (1) is to solve
multiple, inter-correlated such ranking problems simultaneously.

3.2 Optimization Solutions
We first present an equivalent formulation of Eq. (1). Denote

the aggregated ranking vector r = (r′1, ..., r
′
g)′, the aggregated query

vector e = (e′1, ..., e
′
g)′. Let the aggregated adjacency matrix Ã =

diag(Ã1, ..., Ãg) be a g × g diagonal block matrix, Oi j be an ni × n j

binary indicator matrix with Oi j(x, y) = 1 if the xth node in Ai is the
yth node in A j, i.e., common node. Then O is a block matrix whose
(i, j)th block is G(i, j)Oi j.

Since O may be singular due to zero-rows/columns, we define
Y = O + DT , where DT = diag(dm(1)In1 , ..., dm(g)Ing ) − DO with
Ini (1 ≤ i ≤ g) being an ni × ni identity matrix and DO being the
degree matrix of O. Y is non-singular. The (i, i)th block of DY

(i.e., Y’s degree matrix) equals dm(i)Ini . Finally, we define X =

D−
1
2

Y (DY − Y)D−
1
2

Y = In − Ỹ, where Ỹ = D−
1
2

Y YD−
1
2

Y .
With these definitions, the objective function in Eq. (1) can be

re-written as the following matrix form

J(r) = cr′(In − Ã)r + (1 − c)∥r − e∥2F + 2ar′Xr (2)

where n =
∑g

i=1 ni is the total number of nodes in all the domain-
specific networks.

LEMMA 1. Equation (1) and Equation (2) are equivalent.

PROOF. We only need to prove that the third term in Eq. (1) is
equal to that in Eq. (2).

By the definition of X and r, we have

r′Xr = r′Inr − r′Ỹr =
g∑

i=1

r′iIni ri −
g∑

i=1

g∑
j=1

r′iỸi jr j

where Ỹi j is the (i, j)th block of Ỹ of size ni × n j. Then

r′Xr =
1
2

( g∑
i=1

r′i√
dm(i)

(DY )ii
ri√
dm(i)

− 2
g∑

i=1

g∑
j=1

r′i√
dm(i)

Yi j
r j√
dm( j)

+

g∑
j=1

r′j√
dm( j)

(DY ) j j
r j√
dm( j)

)
where (DY )ii is the ith diagonal block of DY , and Yi j is the (i, j)th

block of Y. Thus

r′Xr =
1
2

( g∑
i=1

(
r′i√
dm(i)

(DO)ii
ri√
dm(i)

+
r′i√
dm(i)

(DT )ii
ri√
dm(i)

)

− 2
g∑

i=1

g∑
j=1

(
r′i√
dm(i)

G(i, j)Oi j
r j√
dm( j)

+
r′i√
dm(i)

(DT )i j
r j√
dm( j)

)

+

g∑
j=1

(
r′j√
dm( j)

(DO) j j
r j√
dm( j)

+
r′j√
dm( j)

(DT ) j j
r j√
dm( j)

)
)

where (DT )i j, (DO)i j and Oi j are block matrices representing (i, j)th

block of DT , DO and O, respectively. Since DT is a diagonal block
matrix, we have

2
g∑

i=1

g∑
j=1

r′i√
dm(i)

(DT )i j
r j√
dm( j)

= 2
g∑

i=1

r′i√
dm(i)

(DT )ii
ri√
dm(i)

and
g∑

i=1

r′i√
dm(i)

(DT )ii
ri√
dm(i)

− 2
g∑

i=1

g∑
j=1

r′i√
dm(i)

(DT )i j
r j√
dm( j)

+

g∑
j=1

r′j√
dm( j)

(DT ) j j
r j√
dm( j)

= 0

This means DT does not affect the ranking results. Therefore, we
have that

r′Xr =
1
2

g∑
i=1

g∑
j=1

G(i, j)
(

r′i (Ii j)√
dm(i)

ri(Ii j)√
dm(i)

− 2
r′i (Ii j)√

dm(i)

r j(Ii j)√
dm( j)

+
r′j(Ii j)√

dm( j)

r j(Ii j)√
dm( j)

)

=
1
2

g∑
i=1

g∑
j=1

G(i, j)∥
ri(Ii j)√

dm(i)
−

r j(Ii j)√
dm( j)

∥2F

This completes the proof.



Algorithm 1: CROSSRANK

Input: (1) a network of networks R =< G,A, θ >; (2) the
query vectors ei, (i = 1, ..., g); and (3) the parameters a
and c

Output: the ranking vectors ri, (i = 1, ..., g)

Offline-computation: Construct Ã and Ỹ from R;1
Online-ranking:2
Construct the aggregated query vector e = (e′1, ..., e

′
g)′;3

Initialize the aggregated ranking vector r = e;4
while not convergence do5

Update: r← ( c
1+2a Ã + 2a

1+2a Ỹ)r + 1−c
1+2a e;6

end7
return the ranking vectors r1, ..., rg based on r8

From Eq. (2), it can be seen that the objective function J is a
quadratic function of the ranking vector r. We have

∂J
∂r
= 2((1 + 2a)In − cÃ − 2aỸ)r − 2(1 − c)e

If we set r = r − η ∂J
∂r , where η = 1

2+4a , we have

r = (
c

1 + 2a
Ã +

2a
1 + 2a

Ỹ)r +
1 − c

1 + 2a
e (3)

Based on Eq. (3), we have a fixed-point approach to compute the
optimal ranking vector r that minimizes the objective function J(r)
as illustrated in Algorithm 1.

3.3 Proofs and Analysis
In this subsection, we analyze Algorithm 1 in terms of its con-

vergence, optimality, complexity and discuss its relationship with
existing ranking algorithms.

We start with the the convergence of Algorithm 1, which is sum-
marized in Theorem 1. It says that the proposed CROSSRANK al-
gorithm converges to its closed-form solution.

THEOREM 1. Convergence of CROSSRANK. Algorithm 1 con-
verges to the closed-form solution: r = (In− c

1+2a Ã− 2a
1+2a Ỹ)−1 1−c

1+2a e.

PROOF. First, the closed-form solution can be obtained by solv-
ing ∂J

∂r = 0. Then let M = c
1+2a Ã + 2a

1+2a Ỹ. Eq. (3) becomes
r = Mr + 1−c

1+2a e. Next, we show that the eigenvalues of M are
in (−1, 1).

Since Ã and Ỹ are similar to the stochastic matrices AD−1
A =

D
1
2
A ÃD−

1
2

A and YD−1
Y = D

1
2
Y ỸD−

1
2

Y , respectively, both Ã and Ỹ have
eigenvalues within [−1, 1].

One result of the Weyl’s inequality theorem [1] states that for
matrices Ĥ,H,P ∈ Hn, where Hn is the set of n × n Hermitian
matrices, if Ĥ = H + P and their eigenvalues are arranged in non-
increasing orders, i.e., λ1(Ĥ) ≥ ... ≥ λn(Ĥ), λ1(H) ≥ ... ≥ λn(H),
λ1(P) ≥ ... ≥ λn(P), then the following inequalities hold:

λn(P) ≤ λi(Ĥ) − λi(H) ≤ λ1(P),∀i = 1, ..., n

Since Ã, Ỹ,M ∈ Hn and M = c
1+2a Ã + 2a

1+2a Ỹ, we have

λ1(M) ≤ c
1 + 2a

λ1(Ã) +
2a

1 + 2a
λ1(Ỹ)

λn(M) ≥ c
1 + 2a

λn(Ã) +
2a

1 + 2a
λn(Ỹ)

which means the eigenvalues of M are in the range of [− c+2a
1+2a ,

c+2a
1+2a ].

Since 0 < c < 1, the eigenvalues of M are in (−1, 1).
Based on this property, we can show the convergence of the

fixed-point approach. Without loss of generality, let r(0) = e, and t

be the iteration index (t ≥ 1). According to Eq. (3), we have

r(t) =Mte +
t−1∑
i=0

Mi 1 − c
1 + 2a

e

Since the eigenvalues of M are all in (−1, 1), we have

lim
t→∞

Mt = 0, and lim
t→∞

t−1∑
i=0

Mi = (In −M)−1

Therefore

r = lim
t→∞

r(t) = (In −M)−1 1 − c
1 + 2a

e

= (In −
c

1 + 2a
Ã − 2a

1 + 2a
Ỹ)−1 1 − c

1 + 2a
e

which is the closed-form solution.

Next, we show in Lemma 2 that Algorithm 1 finds the global
optimal solution of the objective function J(r) defined in Eq. (2).

LEMMA 2. Optimality of CROSSRANK. At convergence, Al-
gorithm 1 finds the global minimal solution of J(r) defined in Eq. (2)

PROOF. This can be proved by showing that the function in
Eq. (2) is convex. The Hessian matrix of Eq. (2) is ▽2J = 2((1 +
2a)In − cÃ − 2aỸ). Following the similar idea as in the proof of
Theorem 1, we have that the eigenvalues of ▽2J are no less than
2(1 − c). Since 0 < c < 1, ▽2J is positive-definite. Therefore,
Eq. (2) is convex.

The complexity of Algorithm 1 is summarized in Lemma 3, which
says that it is linear w.r.t. the overall number of nodes and edges in
NoN in terms of both space and time cost.

LEMMA 3. Complexity of CROSSRANK. The time complexity
of Algorithm 1 is O(T ∗(m + ng)) and its space complexity is O(m +
n), where m =

∑g
i=1 mi, n =

∑g
i=1 ni, and T ∗ is the total iteration

number.

PROOF. In the preprocessing stage, we need to construct Ã and
Ỹ. The construction time of Ã is O(m), since there are O(m) nonzero
entries in Ã. The construction time of Ỹ is O(gn), since the nonzero
entries of Ỹ are pairwise intersection of node lists of all the domain-
specific networks, i.e.,

∑g
i=1 gni = gn. Therefore, preprocessing

cost is O(m+ gn). The online-computation cost depends on the fix-
point updating step in Eq. (3). Since there are O(m+gn) nonzero en-
tries in c

1+2a Ã+ 2a
1+2a Ỹ, the online-computation cost is O(T ∗(m+gn)).

In Algorithm 1, we need to store Ã and Ỹ, with space complexity
O(m+gn). Usually g is much smaller than n, we can regard time and
space complexities as O(T ∗(m+ n)) and O(m+ n) respectively.

Finally, we show the relationship between the proposed CROSS-
RANK algorithm and random walk with restart (RWR).

LEMMA 4. Relationship between CROSSRANK and RWR.
CROSSRANK fixed-point approach is equivalent to random walk
with restart with the transition matrix W̃ = c

c+2a Ã + 2a
c+2a YD−1

Y if Ã
is stochastic.

PROOF. Let c̃ = c+2a
1+2a and W = c

c+2a Ã+ 2a
c+2a Ỹ, we can transform

Eq. (3) to

r = c̃Wr + (1 − c̃)e (4)

and the closed-form solution of Eq. (2) to

r = (In − c̃W)−1(1 − c̃)e (5)



These formulations have a RWR form except that W is not stochas-
tic, since Ã and Ỹ are symmetrically normalized. If we denote
W̃ = c

c+2a Ã + 2a
c+2a YD−1

Y , we can further transform the closed-form
solution to

r = (In −
c

1 + 2a
Ã − 2a

1 + 2a
Ỹ)−1 1 − c

1 + 2a
e

= D−
1
2

Y (In −
c

1 + 2a
Ã − 2a

1 + 2a
YD−1

Y )−1D
1
2
Y

1 − c
1 + 2a

e

= D−
1
2

Y (In − c̃W̃)−1D
1
2
Y (1 − c̃)e

(6)

In the above equation, D
1
2
Y ÃD−

1
2

Y = Ã since D
1
2
Y ÃD−

1
2

Y is a diago-
nal block matrix, of which each diagonal block can be represented

as (DY )
1
2
ii (Ã)ii(DY )

− 1
2

ii where (DY )ii and Ãii are the ith diagonal block
of DY and Ã, respectively. Since the diagonal values of (DY )ii equal

to dm(i), (DY )
1
2
ii (Ã)ii(DY )

− 1
2

ii = (Ã)ii and D
1
2
Y ÃD−

1
2

Y = Ã.
Note that we can view W̃ as the normalized matrix of a network

generated by linking the common nodes between any two domain-
specific networks if they are connected in the main network. Eq. (6)
shows that if we normalize the initial vector e of CROSSRANK as
ẽ = D

1
2
Y e, the process r̃ = c̃W̃r̃ + (1 − c̃)ẽ spreads information

symmetrically within domain-specific networks and stochastically
across domain-specific networks (note this process converges since
W̃ and W are similar). It gives the same ranking results as Eq. (4),

since multiplying D−
1
2

Y on the ranking scores r̃ does not affect the
relative ranking order within the domain-specific networks. If Ã
is stochastic, W̃ is stochastic and r̃ = c̃W̃r̃ + (1 − c̃)ẽ becomes a
stochastic process. This completes the proof.

4. CROSSQUERY
In this section, we address CROSSQUERY. Note that CROSS-

QUERY is a special case of CROSSRANK, by (1) requiring the
query node being from a source domain-specific network As; (2) re-
stricting the query results within a target domain-specific network
Ad; and (3) searching for a set of k most relevant nodes from Ad

(as opposed to demanding the exacting ranking vectors). Thus, a
default solution for CROSSQUERY is to run the CROSSRANK al-
gorithm to get the ranking vector rd for the target domain-specific
network and return the top-k nodes with the highest ranking scores.
In this section, we aim to further speed-up its computation.

4.1 CROSSQUERY-BASIC
According to Lemma 4, CROSSRANK has a RWR form on the

integrated normalized matrix W. This not only reveals an interest-
ing relationship between CROSSRANK and RWR, but also opens
the door to take the advantage of the vast machinery of the ex-
isting scalable algorithms for RWR [25, 5, 6]. For example, we
could modify the algorithm in [6] to solve CROSSQUERY since
limt→∞(c̃W)t = 0 (a prerequisite of this algorithm), which is sum-
marized in Algorithm 2. This is an exact method that improves the
basic power iteration method by estimating the node ranking scores
using only a small number of iterations.

Time Complexity. Following the notations in Lemma 3, the over-
all time complexity of CROSSQUERY-BASIC is O(T (b f + h) +
m + gn), where b is the average size of the neighborhood for each
node, f and h are the average size of the subtree T (t) and the se-
lected nodes set S(t) over all iterations respectively, T is the total
number of iterations. Compared with the CROSSRANK method,
whose time complexity is O(T ∗(m + gn)), where T ∗ is the total
number of iterations, Algorithm 2 is more efficient since in prac-
tice b f << m + gn, h << n and T << T ∗.

Algorithm 2: CROSSQUERY-BASIC (adopted from [6])
Input: (1) matrices W,Wmax (Wmax(u) = maxv∈N(u)W(u, v)

where N(u) is the neighbourhood of u); (2) node sets
V1, ...,Vg; (3) nodes q, s, d and (4) parameters c̃, k

Output: Top k relevant nodes set K
Set es(q) = 1, ei = 0,∀i ∈ (1, ..., g)\s, and the query vector1
e = (e′1, ..., e

′
g)′;

Initialize the random walk vector p = e, the lower bound2

vector r(0)
d = 0, and the upper bound vector r̄(0)

d = 0;
Initialize the iteration number t = 0, Subtree T (0) = {q}, the3
selected nodes set S(0) = Vd, the threshold σ = −1;
while |S(t)| > k do4

Increase the iteration number t = t + 1;5
layer(t) = {u|u.layer = t by BFS rooted at q,∀u ∈ ∪g

i=1Vi};6
expand T (t) = T (t−1) ∪ layer(t);7
update p(T (t))←Wp(T (t));8

update lower bound: r(t)
d ← r(t−1)

d + (1 − c̃)c̃tp(S(t−1));9

update upper bound: r̄(t)
d ← r(t)

d + c̃t+1Wmax(S(t−1));10

update threshold: σ← the kth largest value in r(t)
d ;11

shrink selected nodes: S(t) = {u|r̄(t)
d (u) ≥ σ,∀u ∈ S(t−1)};12

shrink bounds lists: r(t)
d ← r(t)

d (S(t)), r̄(t)
d ← r̄(t)

d (S(t));13
end14
return K = S(t)15

4.2 CROSSQUERY-FAST
Next, we propose a more efficient algorithm for CROSSQUERY.

The basic idea is as follows. Let the corresponding main nodes for
As and Ad be node s and node d, respectively. Given s and d, parts
of the main network G might have little contributions to measure
the relevance for the nodes from Ad w.r.t. the query node, and thus
can be pruned with little impact on the final query accuracy. In
the context of NoN, even if we can only prune a small portion of
the main network, the computational efficiency can be significantly
improved since all the corresponding domain-specific networks can
be filtered out during the ranking process.

Let r(v) be the ranking score of any node v w.r.t. a query node
q by RWR. It is well known that r(v) can be represented by the
so-called inverse P-distance [9].

r(v) =
∑

p∈{q v}
Prob(p)(1 − c)cl(p)

where p ∈ {q  v} is a path from q to v, and l(p) is the un-
weighed length of p. For any path p : v1 → v2 → ... → vl(p),
Prob(p) =

∏l(p)−1
i=1 Prob(vi+1|vi), where Prob(vi+1|vi) is the tran-

sition probability from vi to vi+1. We call Prob(p) the transition
probability of path p.

Inspired by the relationship between CROSSRANK and RWR (as
indicated by Eq. (6)), here we consider Ã to be stochastic (i.e.,
column normalized) to guide the pruning process. Then we can
express the CROSSQUERY score of a node v w.r.t. the query node
q as

r(v) =
∑

p∈{q v}

√
dm(s)
√

dm(d)
Prob(p)(1 − c̃)c̃l(p) (7)

The following lemma says that Prob(p),∀p ∈ {q  v}, is up-
per bounded by the transition probability of some path in the main
network.

LEMMA 5. Upper Bound of Prob(p). For any path p ∈ {q 
v}, ∃p′ ∈ {s d} s.t. Prob(p) ≤ Prob(p′), where p′ is a path con-



necting s and d in the main network. Here Prob(p′) =
∏

ei j∈p′
G(i, j)
dm(i)

where ei j is the edge connecting main nodes i and j in G.

PROOF. For any edge exy ∈ p, let i and j be the main nodes that
contain domain nodes x and y respectively. We have

Prob(p) =
∏
exy∈p

i= j

c
c + 2a

Ãi(y, x)
∏
exy∈p

i, j

2a
c + 2a

(YD−1
Y ) ji(y, x)

≤
∏
exy∈p

i, j

(YD−1
Y ) ji(y, x)

=
∏

ei j∈p′

i, j

G(i, j)
dm(i)

= Prob(p′)

where (YD−1
Y ) ji is the ( j, i)th block of YD−1

Y , which is the transition
matrix from domain-specific network i to j.

In the above lemma, p′ consists of edges in p that go across
domain-specific networks. Let φ be the function that maps each p
to its corresponding p′, i.e., φ(p) = p′, then we have the following
upper bound of the ranking score r(v).

COROLLARY 1. Upper Bound of r(v). The CROSSQUERY score
of a node v ∈ Vd w.r.t. the query node q, i.e., r(v), is upper bounded
by

r(v) ≤
∑

p∈{q v}

√
dm(s)
√

dm(d)
Prob(φ(p))(1 − c̃)c̃l(φ(p))

PROOF. This can be derived directly from Eq. (7) and Lemma
5. The detailed proof is omitted.

From Corollary 1, we have that if Prob(φ(p)) is small, the con-
tribution from the path p to r(v) will be small. Based on this obser-
vation, we can extract a subnetwork of the main network consisting
of paths with large Prob(φ(p)).

For any p, let ˜Prob(φ(p)) =
√

dm(s)√
dm(d)

Prob(φ(p)) =
∏

ei j∈φ(p)
G(i, j)

√
dm(i)
√

dm( j)
.

We define the distance between node i and node j as

Li j = −log(
G(i, j)

√
dm(i)

√
dm( j)

) (8)

Then the upper bound of the ranking score r(v) in Corollary 1
becomes

r(v) ≤
∑

p∈{q v}
10−

∑
ei j∈φ(p) Li j (1 − c̃)c̃l(φ(p)) (9)

This transformation allows us to search for short paths connect-
ing s and d in the main network that capture high transition proba-
bilities. We adopt a fast heuristics proposed in [12] to extract these
paths. With the subgraph consisting of the extracted paths in the
main network, we then apply CROSSQUERY-BASIC on the corre-
sponding NoN to retrieve the top-k most relevant nodes from the
target domain-specific network.

Algorithm 3 summarizes this approach. The algorithm starts the
shortest path search rooted from s and d simultaneously in G (e.g.,
using Dijkstra’s algorithm). Let N(s) and N(t) be the neighbor-
hoods of s and d expanded by the algorithm so far. The first over-
lapping node in N(s) and N(t) identifies the shortest path between
s and d. Denote this path as p′max as it has the maximal transition
probability from s to d (Steps 4 to 6). The algorithm continues ex-
panding and adding new nodes in N(s) and N(t). The overlapping
nodes in N(s) and N(t) will generate new paths. The expansion
stops when the transition probability of the newly discovered path

Algorithm 3: CROSSQUERY-FAST

Input: (1) matrices G, Ã,Y; (2) node setsV1, ...,Vg; (3)
nodes s, d, q and (4) parameters: ϵ, a, c, k

Output: Top k relevant nodes set K
Initialize L(p′max) = ∞, neighbourhoods N(s) = ϕ,N(d) = ϕ,1
radiuses rs = 0, rd = 0, selected nodes set G = ϕ;
Transform similarity in G into distances by Eq. (8);2

while rs ≤ L(p′max)−log(ϵ)
2 ∨ rd ≤ L(p′max)−log(ϵ)

2 do3
if N(s) and N(d) first overlap at node u then4

L(p′max) = L(s u d);5
end6

if rs ≤ L(p′max)−log(ϵ)
2 then7

Expand N(s) and update rs;8
end9

if rd ≤ L(p′max)−log(ϵ)
2 then10

Expand N(d) and update rd;11
end12

end13
Further prune N(s) and N(d):14
G = {u|L(s, u) + L(u, d) ≤ L(p′max) − log(ϵ), u ∈ N(s) ∪ N(d)};
Calculate W, Wmax, c̃ based on G, Ã, Y, a and c;15
Apply CROSSQUERY-BASIC on the extracted NoN;16
return K17

p′new drops below ϵ × ˜Prob(p′max), where 0 < ϵ < 1 is an error
factor. Thus we have L(p′new) > L(p′max) − log(ϵ), where L(·) is the
weighed length of a path. Therefore, the neighborhoods with radius
L(p′max)−log(ϵ)

2 from s and d (i.e., rs and rd) will contain all significant
paths based on ϵ (Steps 7 to 12). A node u in the neighborhoods
can be pruned if L(s, u) + L(u, d) > L(p′max) − log(ϵ), where L(s, u)
and L(u, d) are the shortest distances between s and u, u and d, re-
spectively (Step 14). Finally we apply CROSSQUERY-BASIC on
the pruned NoN (Step 15 to 16).

Time Complexity. Let the number of nodes and edges in the main
network be g and z respectively, and T be the number of iterations.
Subgraph extraction takes O(T (glog(g) + z)) using Dijkstra’s algo-
rithm. The pruning step takes O(g). Thus the overall complexity of
subgraph extraction is O(T (glog(g) + z)). Note that since g and z
are typically very small compared to the overall size of the domain-
specific networks, this step is usually very efficient. Experimental
results show that CROSSQUERY-FAST brings 4.5× to 7.5× addi-
tional speedup while preserving a high accuracy.

5. EXPERIMENTS
In this section, we perform comprehensive experiments to eval-

uate the performance of the proposed methods. We study NoN
in two real-world applications: ranking authors in the network of
co-author networks constructed from the DBLP bibliographic data,
and prioritizing candidate gene in the network of tissue-specific
protein interaction networks. Synthetic datasets are also generated
to evaluate the efficiency of the developed optimization strategies.
All experiments are performed on a 3.00 GHz desktop PC with 8G
memory.

5.1 Co-Author NoN
We construct the co-author NoN from the DBLP data [24] as

follows. The main network consists of 5 research areas, i.e., data
mining (DM), machine learning (ML), database (DB), information
retrieval (IR), and bioinformatics (BIO). Each area corresponds to
a node in the main network. The conferences included in each area
are summarized in Table 2. The similarity between two areas is
measured by the ratio between the number of citations across these



Table 2: Areas in the main network
Area Conference included
DM KDD, ICDM, SDM, PKDD, PAKDD
ML ICML, NIPS, AAAI, IJCAI, UAI, ECML
DB VLDB, SIGMOD, ICDE, ICDT, EDBT, PODS
IR SIGIR, WWW, ACL, ECIR, CIKM
BIO ISMB, RECOMB, ECCB, BIBE, BIBM, WABI

two areas and the total number of cited papers in them. This is
intuitive since two similar areas are more likely to cite each other’s
papers. The co-author network in each area is used as the domain-
specific network.

5.1.1 Effectiveness Evaluation
To evaluate the effectiveness of the NoN model, we first apply

CROSSRANK and study how the top-10 authors in DB change when
varying a. Table 3 shows the ranking results for different a values.
Note that when a = 0, the ranking result is the same as that of
applying random walk with restart in each individual area indepen-
dently.

From the table, we can see that the rank of three authors, Jiawei
Han, Christos Faloutsos and Philip S. Yu, increases as a increases.
When a = 0, their rank indicates their contributions to DB only.
When a increases, their contributions to areas related to DB are
also taken into consideration. In particular, they are the top-3 re-
searchers in DM, which is the most similar area to DB in the main
network. This indicates that CROSSRANK can effectively recog-
nize a researcher’s broader impact by incorporating his/her contri-
bution across multiple areas.

Next, we evaluate the effectiveness of CROSSQUERY by study-
ing an interesting cross-area link prediction task, i.e., for a given
query author, we would like to identify future collaborators for
this author in a relevant area. In particular, we partition the DBLP
dataset into two parts, one from 2001 to 2005 (time interval T1) and
another from 2006 to 2010 (time interval T2). We are interested in
the DB researchers who have no DM publications during T1 but
collaborate with DM researchers and publish in DM during T2. We
select such DM-DB author-pairs and use network in T1 to predict
their co-authorship in T2.

For comparison, we select methods developed for (1) a single
merged co-author network, and (2) heterogeneous information net-
work. For a single merged network, we select the following meth-
ods. The path counting (PC) method uses the number of paths be-
tween each pair. Here we consider paths with length no longer
than 5. The Katz method [11] is also a path counting method that
penalizes longer paths. Personalized PageRank [9] and PropFlow
[16] are random walk based methods. PathSim is designed for het-
erogeneous information network [22]. We use the 9 meta paths
proposed in [21] for co-authorship link prediction. The parameters
of the selected methods are tuned for their optimal performance.

Note that for all the selected methods, we focus on authors with
at least certain number of publications, and author-pairs who are
within a few hops in the merged overall co-author networks. This
is reasonable since highly productive authors are more likely to co-
operate with authors within a small distance [21].

We perform leave-one-out cross validation and use accuracy and
AUC value as the evaluation criteria. Specifically, we test one se-
lected DM-DB author-pair at each time. The DM researcher is used
as the query node and DB is the target query area. A prediction is
considered accurate if the test DB researcher is among the top-20
ranked authors in DB.

Table 4: Co-authorship prediction results
#Papers Hops #Pairs Methods AUC Accuracy

PC 0.7196 0.4444
Katz 0.7439 0.5556

≥ 3 [3, 4] 45 PropFlow 0.7558 0.6222
PathSim 0.5636 0.2444
PageRank 0.7417 0.5333
CrossQuery 0.7685 0.6444
PC 0.6009 0.3000
Katz 0.6243 0.3714

≥ 3 [3, 6] 70 PropFlow 0.6268 0.4429
PathSim 0.5278 0.2143
PageRank 0.6378 0.3714
CrossQuery 0.6632 0.4571
PC 0.6521 0.2609
Katz 0.6717 0.3478

≥ 5 [3, 4] 23 PropFlow 0.6850 0.3478
PathSim 0.4279 0.1304
PageRank 0.6743 0.3478
CrossQuery 0.7099 0.3478
PC 0.5692 0.2105
Katz 0.5786 0.2368

≥ 5 [3, 6] 38 PropFlow 0.5950 0.2895
PathSim 0.4362 0.1053
PageRank 0.5880 0.2368
CrossQuery 0.6308 0.2895

Table 4 shows the results. From the table, we can see that CROSS-
QUERY outperforms all alternative methods. The performance gain
becomes larger when more test author-pairs are available. The al-
ternative methods are not suitable for this cross-area query task,
since they only consider the similarity between the authors but not
areas. Note that the meta paths used in PathSim do not consider the
similarity between areas and conferences either.

5.1.2 Efficiency Evaluation
We evaluate the efficiency of the proposed methods using both

the DBLP and synthetic datasets. The main network in the DBLP
NoN consists of 121 conferences. The number of nodes in the
conference-specific coauthor networks ranges from 88 to 14,636
depending on the size of the conferences, with a total of 259,822
nodes. The synthetic NoN are generated using the R-MAT model
[2] so that the resulting networks resemble real-word networks.
The main network consists of 1,023 nodes. The domain-specific
networks contain 935 to 8,100 nodes with a total of 3,773,519
nodes.

Figure 2 shows the running time of CROSSQUERY-BASIC and
CROSSQUERY-FAST when varying the number of returned nodes
k. The running time of CROSSRANK is also reported in the fig-
ure as a reference. The running time is averaged over 10 ran-
domly selected query nodes and target domain-specific networks.
The parameters are a = 0.2, c = 0.85, and ϵ = 10−3. It can
be seen that both CROSSQUERY-BASIC and CROSSQUERY-FAST
are much more efficient than CROSSRANK. The running time of
CROSSQUERY-BASIC and CROSSQUERY-FAST increases as k in-
creases. The randomly selected query nodes may affect the trend,
e.g., in Figure 2(b) when k = 500. The corresponding averaged ac-
curacy of CROSSQUERY-FAST is shown in 2(c). From the results,
we can see that CROSSQUERY-FAST achieves more than 90% ac-
curacy for all settings and dramatically improves the efficiency.

5.2 Protein Interaction NoN
In this section, we apply the proposed NoN model to the candi-

date gene prioritization problem, which has recently attracted in-



Table 3: Top ranked authors in the database area when varying a
Rank a = 0 a = 0.05 a = 0.1 a = 0.3 a = 0.5
1 Divesh Srivastava Jiawei Han Jiawei Han Jiawei Han Jiawei Han
2 Jiawei Han Divesh Srivastava Divesh Srivastava Philip S. Yu Philip S. Yu
3 Philip S. Yu Philip S. Yu Philip S. Yu Divesh Srivastava Christos Faloutsos
4 Hector Garcia-Molina Hector Garcia-Molina Hector Garcia-Molina Christos Faloutsos Michael Stonebraker
5 Raghu Ramakrishnan Raghu Ramakrishnan Christos Faloutsos Michael Stonebraker Divesh Srivastava
6 Gerhard Weikum Gerhard Weikum Michael Stonebraker Hector Garcia-Molina Hector Garcia-Molina
7 Beng Chin Ooi Christos Faloutsos Raghu Ramakrishnan Michael J. Carey Michael J. Carey
8 H. V. Jagadish Michael Stonebraker Gerhard Weikum Raghu Ramakrishnan Gerhard Weikum
9 Michael J. Carey Michael J. Carey Michael J. Carey Gerhard Weikum Raghu Ramakrishnan
10 Michael Stonebraker Beng Chin Ooi Beng Chin Ooi Elke A. Rundensteiner Elke A. Rundensteiner
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Figure 2: Efficiency and accuracy of the proposed techniques

tensive research interests. Various methods have been proposed
including regression based methods [29], alignment based methods
[30], random walk based methods [31, 14, 28], and maximum flow
based methods [3].

Most of the state-of-the-art methods use a heterogeneous net-
work as shown in Figure 3(a). The heterogeneous network con-
sists of three components: a disease similarity network, a generic
protein interaction network, and known disease-gene associations
connecting the two networks. Based on the “guilt-by-association”
principle, these methods utilizes similarities between diseases to
infer genes that are associated with diseases [4].

Since the majority of genetic disorders tend to manifest only in
a few tissues, recent studies have shown that it is more reasonable
to utilize tissue-specific protein interaction networks in candidate
gene prioritization [17].

We construct the tissue-specific protein interaction NoN as shown
in Figure 3(b). The similarity network between 5,080 diseases is re-
trieved from the OMIM database [7] and used as the main network
in NoN. We use the tissue-specific protein interaction network con-
tributed in [17]. The authors generated tissue-specific protein inter-
action networks of 9,998 proteins for 60 human tissues using gene
expression profiles in these tissues. For each disease in the main
network, we use the protein interaction network in the tissue that
is most relevant to the disease as its domain-specific network [13].
We collect 2,187 known associations between 1,524 diseases and
1,326 genes from the OMIM database [7] and select a subset of
known disease-gene associations by filtering out diseases with the
MAS (Maximum Association Score) less than 8%, which is used
for selecting diseases having high associations with relevant tis-
sues [17, 13], and diseases whose maximum similarity to all other
diseases is less than 0.5 to preserve significant similarities among
diseases [27]. The resulting disease-gene associations involve 147
associations between 106 diseases and 102 genes. These genes are
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Figure 3: Heterogeneous network and NoN for the candidate
gene prioritization problem. The protein interaction network
in (a) is unweighed while those in (b) are weighed, denoting by
the edge thickness

used as seed nodes in CROSSRANK which are represented by the
white rectangles in Figure 3(b)

We select four state-of-the-art methods for comparison, includ-
ing RWRH [14], BIRW [31], PRINCE [28] and Katz [20]. We
use the standard leave-one-out cross validation to compare the pri-
oritization accuracy of the selected methods. Specifically, at each
time, we remove an association between the query disease and one
causal gene, as well as all the associations involving the causal gene
to avoid the trivial cases where mutations in the same gene cause
two very similar diseases [28, 17]. This causal gene is used as the
test gene. If the test gene is ranked within the top-k genes, where
k is the total number of known genes for the query disease, this is
considered as a successful prediction. This evaluation method is



 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Generic Tissue-specific

S
u
cc

e
ss

 c
o
u
n
ts

PPI network type

BIRW
RWRH

PRINCE
Katz

CrossRank

(a) # successful preditions

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
ru

e
 p

o
si

tiv
e
 r

a
te

False positive rate

CrossRank
BIRW

RWRH
PRINCE

Katz

(b) ROC using generic protein network

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
ru

e
 p

o
si

tiv
e
 r

a
te

False positive rate

CrossRank
BIRW*

RWRH*
PRINCE*

Katz*

(c) ROC using tissue-specific protein network

Figure 4: Comparison between CROSSRANK and baseline methods

Table 5: AUC value comparison
Method AUC50 AUC100 AUC300 AUC500 AUC
RWRH 0.2222 0.2846 0.3335 0.3601 0.8049
RWRH* 0.2143 0.2616 0.3364 0.3738 0.8475
BIRW 0.2261 0.2786 0.3198 0.3381 0.7586
BIRW* 0.2233 0.2653 0.3203 0.3393 0.7672
PRINCE 0.2373 0.2799 0.3454 0.3827 0.8339
PRINCE* 0.2446 0.2899 0.3656 0.4133 0.8832
Katz 0.1869 0.2343 0.2896 0.3073 0.7594
Katz* 0.1948 0.2299 0.2804 0.3077 0.7636
CrossRank 0.2935 0.3477 0.4280 0.4800 0.9048

Table 6: Ranking results comparison
Method better tie worse p-value
CrossRank vs. RWRH 106 2 39 2.04 × 10−11

CrossRank vs. RWRH* 94 6 47 2.38 × 10−6

CrossRank vs. BIRW 106 4 37 1.82 × 10−11

CrossRank vs. BIRW* 100 9 38 1.44 × 10−9

CrossRank vs. PRINCE 108 4 35 1.08 × 10−10

CrossRank vs. PRINCE* 79 6 62 1.17 × 10−2

CrossRank vs. Katz 108 5 34 2.32 × 10−12

CrossRank vs. Katz* 103 9 35 1.23 × 10−10

commonly used in the candidate gene prioritization studies [28].
The parameters are tuned for their optimal performance for the se-
lected methods.

Note that all these baseline methods use a generic (non tissue-
specific) protein interaction network. For a fair comparison, we
also apply these methods to tissue-specific protein interaction net-
works. Specifically, for each query disease, we replace the generic
protein interaction network by its most relevant tissue-specific pro-
tein interaction network.

Figure 4(a) shows the number of successful predictions made by
the selected methods. As we can see, using tissue-specific pro-
tein interaction networks can improve the accuracy for the baseline
methods. CROSSRANK has more successful predictions than all
other methods. Figures 4(b) and 4(c) show the ROC curve. The
results are consistent with the previous ones. The corresponding
AUC values are reported in Table 5, where AUC values are reported
by considering up to 50, 100, 300, 500 and all false positives. Note
that a “*” indicates the use of tissue-specific protein interaction net-
works.

We further study how often CROSSRANK gives higher ranks to
test genes than other methods. The results are shown in Table 6.

The Wilcoxon signed rank test is used to assess the statistical sig-
nificance of the difference between the ranking lists given by the
two compared methods. It is clear from the table that the results of
CROSSRANK are significantly better than that of the alternatives.

6. RELATED WORK
Networks are ubiquitous in real-life applications. The simplest

model uses a single graph to represent a network. A variety of
ranking algorithms have been developed for a single network [9, 8,
19, 6, 15]. Recently, various advanced network models have been
proposed, such as multi-relational network [18], heterogenous in-
formation network [23], and hypergraph [34]. The multi-relational
network and heterogeneous information network can incorporate
node or edge type information: in a multi-relational network, edges
connecting two nodes may be of different types; while different
types of objects can co-exist in a heterogenous information net-
work. Some work uses them interchangeably [32]. A tensor based
co-ranking framework is proposed in [18] for multi-relational net-
work. In heterogeneous information network, ranking-based clus-
tering [23] and ranking-based classification [10] frameworks are
developed, where ranking and clustering/classification can be mu-
tually enhanced. In a hypergraph, an edge can connect any subset
of nodes and is similar to a main node in our NoN model. But the
set of nodes connected by an edge in a hypergraph do not form any
network topology. If we treat each hyperedge as a main node, hy-
pergraph can be viewed as special case of NoN where we do not
have any links among domain nodes at all.

7. CONCLUSION
Ranking is a primitive operation in network analysis. In this pa-

per, we propose a new network data model, Network of Networks
(NoN), which enables novel ranking tasks such as CROSSRANK
and CROSSQUERY. We formulate ranking on NoN as a regular-
ized optimization problem, develop efficient algorithms, and pro-
vide rigorous theoretical analysis. Experimental results on real-
world datasets demonstrate the effectiveness and efficiency of the
proposed methods.
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