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Abstract—Automating medical diagnosis is an important data
mining problem, which is to infer likely disease(s) for some ob-
served symptoms. Algorithms to the problem are very beneficial
as a supplement to a real diagnosis. Existing diagnosis methods
typically perform the inference on a sparse bipartite graph with
two sets of nodes representing diseases and symptoms, respec-
tively. By using this graph, existing methods basically assume no
direct dependency exists between diseases (or symptoms), which
may not be true in reality. To address this limitation, in this paper,
we introduce two domain networks encoding similarities between
diseases and those between symptoms to avoid information loss
as well as to alleviate the sparsity problem of the bipartite graph.
Based on the domain networks and the bipartite graph bridging
them, we develop a novel algorithm, CCCR, to perform diagnosis
by ranking symptom-disease clusters. Comparing with existing
approaches, CCCR is more accurate, and more interpretable
since its results deliver rich information about how the inferred
diseases are categorized. Experimental results on real-life datasets
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Existing computational methods on medical diagnosis are
mostly developed on a Quick Medical Reference (QMR)
graphical model [1], [2]. In these approaches, symptoms and
diseases are regarded as two sets of nodes forming a bipartite
graph. In this graph, each pair of correlated disease and
symptom are connected by an association edge, which can
be weighted by the corresponding correlation level [3]. The
diagnosis problem is to infer a probability distribution for
the disease nodes given a subset of the symptom nodes.
Despite their effectiveness, the performance of these methods
are limited by the following problems:

First, by using the bipartite graph, existing approaches
basically assume diseases (symptoms) are independent (or
conditionally independent) with each other. However, in prac-
tice, diseases (symptoms) are always correlated, e.g., “cold”
relates to “influenza”, “bronchitis” relates to “asthma”, etc.
Certain diseases can even cause other diseases to present [1].
Therefore, ignoring such dependencies inevitably results in
severe information loss. Moreover, the associations between
diseases and symptoms are usually far from complete due
to the limited medical records [3]. Only using these sparse
associations in the bipartite graph to perform diagnosis thus
often results in unreliable outcomes of these methods.

Another drawback of existing methods is the poor in-
terpretability of their outputs. For example, given symptoms
“cough”, “expectoration” and “sore throat”, existing methods
may retrieve a ranking list {“cold”, “asthma”, “influenza”,
“bronchitis”, ...}. Although the top several diseases are rel-
evant, some of them are very different in the underlying
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Fig. 1. An example of the symptom-disease networks.

etiologies, such as “cold” and “asthma”. Mixing them in
a single list is quite confusing and can mislead following
therapies since different diseases can be totally different in
drug uses [4]. Thus considerable expert labors are still needed
to identify the real causes from such lists.

In this paper, we address the first problem by introducing
two domain networks to represent the similarities (or depen-
dencies) between symptoms and those between diseases. Fig.
1 illustrates a symptom similarity network (left) and a disease
similarity network (right), where nodes represent symptoms
and diseases respectively, and each edge can be weighted by
how similar two symptoms (diseases) are. Then, we refer to the
bipartite graph between symptoms and diseases as the cross-
domain association network, which bridges different domains
by the association edges. It is worth to note that the rich depen-
dency information in the domain networks can supplement the
sparse association network, hence can substantially alleviate
the problems caused by sparsity.

To address the second problem, we propose to conduct
diagnosis at the cluster-level, in contrast to the traditional node-
level diagnosis. For example, the following list, {{1st class:
“cold”, “influenza”}, {2nd class: “bronchitis”, “asthma”}, ...},
is more interpretable than a mixed one since it shows how
similar diseases are clustered while the clusters are ordered
by their possibilities to the symptoms. In this way, people can
easily understand what categories of diseases are relevant at a
high level so they can zoom in certain category to locate the
true causes more efficiently. Hence, allowing such a clustered
structure in the ranking list can help reduce the risk of false
identifications. In this paper, we refer to this novel problem
as the cross-network cluster ranking problem, which cannot
be solved by adapting the existing graph clustering algorithms
[5]–[7] or co-clustering algorithms [8].

To handle the new problem, in this paper, we develop a
new algorithm CCCR for joint Cross-network Clustering and



Cluster Ranking, based on the dual network structure shown
in Fig. 1. Generally, CCCR infers a probability distribution for
the disease clusters given a symptom cluster. Detecting disease
clusters can show users how similar diseases are categorized.
Symptoms are also considered at the cluster-level since related
symptoms often occur together. In particular, CCCR jointly
clusters domain networks and ranking inferred clusters so that
the dual procedures are mutually reinforced. Empirical results
demonstrate CCCR can work effectively on real-life symptom-
disease networks.

II. PROBLEM DEFINITION

In this paper, we introduce our method in a generalized
manner so that it is theoretically applicable on any number of
domain networks.

We represent the ith domain network by its adjacency

matrix A
(i) ∈ R

ni×ni

+ , where ni is the number of nodes in

domain i. Each entry A
(i)
xy measures the similarity between

nodes x and y in domain i. Suppose we have g domains, for
any pair of domains (i, j), nodes in the two domains may be

linked by an association network B
(ij) ∈ R

ni×nj

+ . The entry

B
(ij)
xy measures the association strength between node x in

domain i and node y in domain j.

The Problem. Our goal is two-fold: (1) we aim to assign each
node in each domain to a specific cluster; (2) for each cluster u
in one domain, we want to assign each cluster in other domains
a score to represent its relevance to cluster u.

III. CROSSCR ALGORITHM

In this section, we introduce our CCCR algorithm. For
domain network clustering, we employ a doubly stochastic ma-
trix decomposition approach due to its superiority in clustering
real-world sparse networks [5]. For cluster ranking, we develop
a second-order random walk model to infer the cross-domain
conditional probabilities of clusters. The two constituents are
then integrated in a joint optimization problem to reinforce
each other. Finally, a robust iterative solution is developed to
solve the problem.

Domain Network Clustering. Suppose there are ki clusters

in domain network A
(i), let H(i) ∈ R

ni×ki

+ be a cluster mem-

bership matrix with H
(i)
xu = P (u|x) indicating the probability

that node x belongs to cluster u. Then a doubly stochastic
approximation to the domain network A

(i) is defined by [5]

Â
(i)
xy =

ki∑

u=1

H
(i)
xuH

(i)
yu

∑ni

z=1H
(i)
zu

(1)

where y and z are different node variables.

The clustering problem is to infer H(i) by minimizing the

approximation error DKL(A
(i)||Â(i)) using KL-Divergence

DKL(·||·). This is equivalent to minimize

J
(i)
A = −

∑

(x,y)∈E(i)

A
(i)
xy log Â

(i)
xy − (α− 1)

∑

xu

logH(i)
xu

s.t. H
(i) ≥ 0, H

(i)
1ki

= 1ni

(2)

where E(i) represents the set of all edges in A
(i), 1ki

is a
column vector of length ki with all entries as 1. The second

term is added by [5] to control the sparsity of H(i). α (α ≥ 1)
is a controlling parameter. In Eq. (2), the equality constraints
are enforced to preserve the probabilistic interpretation of Hxu.

Cross-Network Cluster Ranking. Next, we propose a second-
order random walk model to infer cross-domain cluster ranking
scores. For the ease of presentation, we first consider two
domains A

(1) and A
(2), then we generalize our method to

multiple domain networks.

Given two domain networks, we first augment them by

two sets of latent nodes U = {u}k1
u=1 and V = {v}k2

v=1 to

represent the latent clusters in A
(1) and A

(2), respectively. The
augmented network consists of six components: three original
networks A(1), A(2), B(12), and three added completed bipar-
tite graphs {A(1),U}, {A(2),V}, {U ,V}.

Using the augmented network, we can regard P (u|x)

(i.e., H
(1)
xu in Eq. (2)) as a one step random walk transition

probability from a node x in A
(1) to a latent node u. Similarly,

we have P (v|y) from a node y to a latent cluster v in
domain A

(2). Moreover, we have the cross-domain transition
probability P (y|x) from node x in A

(1) to node y in A
(2),

which can be estimated by P (y|x) = B
(12)
xy /

∑n2

z=1 B
(12)
xz .

Given these empirical probabilities, we want to estimate
P (v|u), which represents the importance of a cluster v in A

(2)

given a cluster u in A
(1). We observe the above mentioned

transition probabilities inherently form two kinds of second-
order random walk paths, from a node x to a latent node v:

(1) Real path (x y  v): Pr(v|x) =

n2∑

y=1

P (v|y)P (y|x)

(2) Latent path (x u v): Pl(v|x) =

k1∑

u=1

P (v|u)P (u|x)

We call the path as a “real path” (or a “latent path”) because
the bridge node y (or u) is a real (or latent) node. Since the
estimated cluster-level probability P (v|u) should well explain

the generation of node-level associations B
(12)
xy (or P (y|x)),

we propose to use the latent path transition probability Pl to
approximate the real path transition probability Pr. That is,
we want to minimize the approximation error DKL(Pr||Pl),
which gives the following loss function for all pairs of (x, v):

−

n1∑

x=1

k2∑

v=1

Pr(v|x) logPl(v|x) (3)

Formally, we define S
(12) ∈ R

k1×k2
+ with S

(12)
uv = P (v|u),

and B̃
(12) to be the row normalized version of B

(12), i.e.,

B̃
(12)
xy = B

(12)
xy /

∑n2

z=1 B
(12)
xz . Then, by enforcing a stochastic

constraint on S
(12), i.e., S(12) ≥ 0 and S

(12)
1k2 = 1k1 , Eq. (3)

can be rewritten in a matrix form as

J
(12)
R = −

∑

xv

(B̃(12)
H

(2))xv
︸ ︷︷ ︸

real paths

log (H(1)
S
(12))xv

︸ ︷︷ ︸

latent paths

(4)

which is our loss function for cross-domain cluster ranking,
where we want to estimate S

(12).

A Unified Objective Function. As mentioned earlier, a prin-
cipled way to infer the clustering of nodes and ranking of



clusters is to jointly train the objective functions in Eq. (2)
and Eq. (4), which allows the mutual enhancement of the two
procedures. By doing so, and generalizing the concept to any
pair of domains i and j, we reach a joint optimization problem
as following

min J ({H(i)}, {S(ij)}) =

g∑

i=1

J
(i)
A + β

∑

ij, i6=j

J
(ij)
R

s.t. H
(i) ≥ 0, H

(i)
1ki

= 1ni

S
(ij) ≥ 0, S

(ij)
1kj

= 1ki
, ∀1 ≤ i, j ≤ g, i 6= j

(5)

where β is a parameter to balance between the domain network
clustering and the cross-domain cluster ranking. When β = 0,
Eq. (5) degenerates to g independent network clustering. Intu-
itively, the more reliable the association networks, the larger
the value of β.

Priority of Nodes in Each Cluster. Previously, we have con-
sidered how to order nodes at the cluster-level, but neglected
the ordering of nodes within each inferred cluster. Next, we
derive a strategy to prioritize nodes within each cluster by their
importances to that cluster.

Once we have obtained the cluster membership probabil-

ities P (u|x) (or H
(i)
xu) in domain i from Eq. (5), we can

calculate the probability P (x|u) by using the Bayes formula
and expansion rule, which gives

P (x|u) =
P (u|x)P (x)

∑ni

z=1 P (u|z)P (z)
=

P (u|x)
∑ni

z=1 P (u|z)
(6)

The above equation can be simply represented by P (x|u) =

(H(i)(D
(i)
H )−1)xu where D

(i)
H is a ki-by-ki diagonal matrix

with (D
(i)
H )uu =

∑ni

z=1 Hzu.

Here, P (x|u) indicates the “importance” of node x to
cluster u in domain i. From Eq. (6), a “center” node of cluster
u has a higher P (x|u) than a “border” node. Thus, we can

rank the entries in each column of H(i)(D
(i)
H )−1 to obtain the

most representative nodes in each cluster.

Learning Algorithm. The objective function in Eq. (5) is not
jointly convex in all variables, hence we take an alternating
minimization approach, i.e., the objective function is alter-
nately optimized w.r.t. one variable while fixing others. The
procedure repeats until a stationary point is achieved.

Solution to H. Let J (H(i)) be the objective function in Eq. (5)

w.r.t. H(i) when fixing other variables as constants. Then the
Lagrangian function of J in Eq. (5) w.r.t. H(i) is

LH(H(i)
,λ

(i)) = J (H(i)) +

ni∑

x=1

λ
(i)
x (

ki∑

u=1

H
(i)
xu − 1) (7)

where λ(i) = (λ
(i)
1 , ..., λ

(i)
ni )

T are Lagrangian multipliers.

Let the gradient of J (H(i)) w.r.t. H
(i) be ∇

(i)
H =

(∇
(i)
H )+ − (∇

(i)
H )−, where (∇

(i)
H )+ and (∇

(i)
H )− represent the

positive and non-positive parts of ∇
(i)
H , respectively. Then the

following theorem gives the iterative solution to H
(i).

Theorem 1. Let λ
(i)
x = (b

(i)
x − 1)/a

(i)
x , where

a
(i)
x =

ki∑

u=1

H
(i)
xu

(∇
(i)
H )+xu

, b
(i)
x =

ki∑

u=1

H
(i)
xu

(∇
(i)
H )−xu

(∇
(i)
H )+xu

(8)

It holds that LH((H(i))new,λ(i)) ≤ LH(H(i),λ(i)), by updat-

ing H
(i) according to Eq. (9).

H
(i)
xu ← H

(i)
xu

a
(i)
x (∇

(i)
H )−xu + 1

a
(i)
x (∇

(i)
H )+xu + b

(i)
x

(9)

Proof: Omitted for brevity.

Solution to S. Similarly, let LS(S
(ij),η(ij)) be the La-

grangian function of J in Eq. (5) w.r.t. S(ij), where η(ij) =

(η
(ij)
1 , ..., η

(ij)
ki

)T are Lagrangian multipliers. Let the gradient

of J w.r.t. S(ij) be ∇
(ij)
S = (∇

(ij)
S )+ − (∇

(ij)
S )−. Then the

following theorem gives the iterative solution to S
(ij).

Theorem 2. Let η
(ij)
u = (d

(ij)
u − 1)/c

(ij)
u , where

c
(ij)
u =

kj∑

v=1

S
(ij)
uv

(∇
(ij)
S )+uv

, d
(ij)
u =

kj∑

v=1

S
(ij)
uv

(∇
(ij)
S )−uv

(∇
(ij)
S )+uv

(10)

It holds that LS((S
(ij))new,η(ij)) ≤ LS(S

(ij),η(ij)), by up-

dating S
(ij) according to Eq. (11).

S
(ij)
uv ← S

(ij)
uv

c
(ij)
u (∇

(ij)
S )−uv + 1

c
(ij)
u (∇

(ij)
S )+uv + d

(ij)
u

(11)

Proof: Omitted for brevity.

In our CCCR algorithm, we first randomly initialize
{H(i)} and {S(ij)} with row normalizations. Then we al-

ternately update {H(i)} by Eq. (9) and {S(ij)} by Eq. (11)
until convergence. According to Theorem 1 and 2, alternately
updating H

(i) and S
(ij) will decrease the objective value in

Eq. (5), as well as enforces stochastic constraints on them.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results on a
real-life symptom-disease network dataset, which is collected
from the largest medical website in China1. Specifically, it
contains a disease similarity network of 9, 721 disease nodes
and 29, 332 edges, a symptom similarity network of 5, 093
symptom nodes and 22, 548 edges, as well as an association
network with 5, 337 symptom-disease associations.

Throughout the experiments, we compare the performance
of CCCR with single network clustering methods including
(1) SNMF, i.e., symmetric non-negative matrix factorization
using Euclidean distance [9]; (2) SNMF KL, i.e., SNMF using
KL-Divergence [9] (3) Spectral clustering (Spectral) [10]; (4)
DCD, i.e., stochastic matrix decomposition approach [5], and
a graph regularized co-clustering method, MCA [8], which can
generate cluster-level relationships between domains.

Clustering Results. In this dataset, we have 17 disease
classes covering 1447 diseases (14.89%). Thus we use purity
accuracy (ACC) to evaluate disease clustering performance.
For symptom clustering, since there is no ground truth, we
use the widely used conductance as a quality measure, which
is defined as [10] Cond(C) = |∂(C)|/min (Vol(C),Vol(C̄)),
where C is a set of nodes, |∂(C)| is the number of edges
with one endpoint inside of C and one endpoint outside of
C, Vol(C) is the sum of node degrees in C, and C̄ is the set of

1http://www.xywy.com/



TABLE I. TOP RANKED DISEASE CLUSTERS GIVEN BY CCCR.

symptom cluster 1st disease cluster (probability) 2nd disease cluster (probability) 3rd disease cluster (probability)

(1)

bloating reflux esophagitis

(0.7877)

duodenal inflammation

(0.1351) − (<0.1000)burp gastroesophageal reflux antral erosion

stomachache gastritis superficial gastritis

(2)

eye fissure macular degeneration

(0.5002)

amblyopia

(0.1569)

conjunctivitis

(0.1330)photophobia retinal detachment hyperopia keratitis

pupillary block vitreous opacities esotropia pink eye

(3)

cerebral hemorrhage cerebral infarction

(0.5400)

skull fracture

(0.1449)

diabetes

(0.1161)intracranial hemorrhage brainstem infarction epidural hematoma hypertension

increased intracranial pressure stroke brain contusion dyslipidemia

SNMF SNMF_KL Spectral DCD MCA CCCR
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Fig. 2. The clustering performance comparison.

nodes outside C. Usually, a lower conductance implies a better
cluster-like structure of C.

Fig. 2 shows the clustering performance of different meth-
ods w.r.t. varying number of symptom clusters k1. Here the
number of disease clusters k2 is fixed for each method to
achieve the best purity accuracy. In Fig. 2(a), we observe
CCCR outperforms other approaches in most values of k1,
which indicates its superiority in detecting meaningful clusters
in terms of domain knowledge. From the figures, we also
observe several peak accuracies of CCCR, which may imply
a hierarchical structure in the symptom network (or disease
network) that results in multiple good choices of k1. Fig. 2(b)
shows the averaged conductances of the detected symptom
clusters. Although DCD is comparable with CCCR in terms
of conductance, which is very small with little room to
improve, its purity accuracy is lower than CCCR. This means
the clusters detected by CCCR make more sense in both
medical context and network topology than other competing
approaches.

Cluster Ranking Results. Next, we demonstrate that CCCR
has better result interpretation by comparing its outcomes with
a well-known QMR-DT algorithm, quickscore [1]. Table I
presents the top 3 disease clusters given a symptom cluster
detected by CCCR. We select 3 interesting symptom clusters
as examples. The disease clusters are sorted in descending
order by their probabilities. Each symptom (or disease) cluster
is represented by its top 3 representative symptoms (or dis-
eases), as discussed in Sec. III. Here, disease clusters with
probabilities less than 10% are filtered out. Table II shows the
top several diseases of quickscore for the symptoms in Table I.
This algorithm only runs on the bipartite network and returns
a single ranking list of diseases for the given symptoms.

Clearly, the lists in Table II mix diseases from different
categories, such as (2) cataract and ocular trauma, which
results in a fairly poor interpretation. Moreover, we have
highlighted relevant diseases in each line by bold italics. As
can be seen, only a few diseases in each list are relevant to the
corresponding symptoms. Such false inferences are caused by

TABLE II. RESULTS OF A QMR-DT ALGORITHM.

Symptom # Top ranked diseases

(1) gastritis, cold, heart disease, fracture, epilepsy

(2) cataract, uveitis, ocular trauma, keratitis, pink eye

(3) subarachnoid hemorrhage, aneurysm, hypertension, cold

the limitation of using the bipartite network only. These results
demonstrate the effectiveness of CCCR and the importance to
take the rich dependencies between symptoms (diseases) into
account when performing diagnosis.

V. CONCLUSION

In this paper, we introduce disease and symptom domain
networks to address the information loss and association
sparsity problems of traditional medical diagnosis algorithms.
Based on the domain-association network structure, we de-
velop a new algorithm CCCR to handle a new diagnosis
problem, with the goal to better interpret the outcomes by
allowing a clustered structure in the retrieved ranking list than
a mixed ranking list. Experimental results on real-life datasets
demonstrate the effectiveness of the proposed method.
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