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Abstract. Node classification in temporal graphs aims to predict node
labels based on historical observations. In real-world applications, tem-
poral graphs are complex with both graph topology and node attributes
evolving rapidly, which poses a high overfitting risk to existing graph
learning approaches. In this paper, we propose a novel Temporal Structural
Network (TSNet) model, which jointly learns temporal and structural
features for node classification from the sparsified temporal graphs. We
show that the proposed TSNet learns how to sparsify temporal graphs
to favor the subsequent classification tasks and prevent overfitting from
complex neighborhood structures. The effective local features are then
extracted by simultaneous convolutions in temporal and spatial domains.
Using the standard stochastic gradient descent and backpropagation
techniques, TSNet iteratively optimizes sparsification and node represen-
tations for subsequent classification tasks. Experimental study on public
benchmark datasets demonstrates the competitive performance of the
proposed model in node classification. Besides, TSNet has the potential
to help domain experts to interpret and visualize the learned models.

Keywords: Temporal graphs - node classification - graph sparsification
- temporal structural convolution

1 Introduction

Temporal graphs, as a data structure that carries both temporal and structural
information from real-world data, has been widely adopted in applications from
various domains, such as online social media [33], biology [27], action recogni-
tion [28], and so on. In this paper, we study the problem of node classification
in temporal graphs [27]: Given a set of nodes with rich features and a temporal
graph that records historical activities between nodes, the goal is to predict the
label of every node. Consider the following application scenario.

Example. In the financial domain, investors are eager to know which com-
panies are promising for investment. As shown in Figure 1, companies and their
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Fig. 1. An example of node classification in a temporal graph from the financial do-
main. Nodes are companies, and edges indicate monthly transactions. The goal is to
predict which companies are promising for investment in the near future.

historical transactions naturally form a temporal graph, shown as a sequence of
graph snapshots. Each snapshot encodes companies as nodes and transactions as
edges within a month. The side information of companies (e.g., industry sector
and cash reserve) and transactions (e.g., transaction amount) is represented by
the node and edge attributes, respectively. In this task, we aim to predict each
company’s label: promising or others for future investment, with interpretable
evidence for domain experts.

While node representation lies at the core of this problem, we face two main
challenges from temporal graphs.

Temporal graph sparsification. Temporal graphs from real-life applica-
tions are large with high complexity. For example, the social graph on Face-
book [5] and the financial transaction graph on Venmo [32] are densely con-
nected with average node degrees of 500 and 111, respectively. Such complexity
poses a high overfitting risk to existing machine learning techniques [20, 17], and
makes it difficult for domain experts to interpret and visualize learned models.
While graph sparsification [16] suggests a promising direction to reduce graph
complexity, existing methods perform sparsification by sampling subgraphs from
predefined distributions [14, 11, 4, 30]. The sparsified graphs may miss important
information for classification because the predefined distributions could be irrel-
evant to subsequent tasks. Several recent efforts [8,22,34] strive to utilize su-
pervision signals to remove noise edges and regularize the graph model training.
However, the proposed methods are either transductive with difficulty to scale
or of high gradient variance bringing increased training difficulty.

Temporal-structural convolution. Local features in the temporal-structural
domain are the key to node classification in temporal graphs. Although existing
techniques have investigated how to build convolutional operators to automati-
cally learn and extract local features from either temporal domain [2] or struc-
tural domain [25], a naive method that simply stacks temporal and structural
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operators could lead to suboptimal performance. An effective method that learns
and extracts local features from joint temporal-structural space is still missing.

Our contribution. We propose Temporal Structural Network (TSNet), a
deep learning framework that performs supervised node classification in sparsi-
fied temporal graphs. TSNet consists of two major sub-networks: sparsification
network and temporal-structural convolutional network.

1. The sparsification network aims to sparsify input temporal graphs by sam-
pling edges from the one-hop neighborhood following a distribution that is
learned from the subsequent supervised classification tasks.

2. The temporal-structural convolutional network takes sparsified temporal graphs
as input and extracts local features by performing convolution in nodes’
neighborhood defined in joint temporal-structural space.

As both sub-networks are differentiable, we can leverage standard stochas-
tic gradient descent and backpropagation techniques to iteratively learn better
parameters to sparsify temporal graphs and extract node representations. Ex-
perimental results on both public and private datasets show that TSNet can
offer competitive performance on node classification tasks. Using a case study,
we demonstrate the potential of TSNet to improve model interpretation and
visualization of temporal graphs.

2 Problem Definition

In the following presentation, we use bold uppercase letters (e.g., A) to represent
tensors, uppercase letters (e.g., A) to represent matrices, lowercase letters (e.g.,
a) to denote scalars, and blackboard bold uppercase letters (e.g., A) to denote
the concept of sets. We start with the definition of temporal graphs.

Temporal graphs. In this work, we employ graph snapshot sequences to
represent temporal graphs. Given ¢ discrete time points and n nodes, a temporal
graph is denoted as G = (V,V,E, A), where V is a set of nodes that appear in a
temporal graph and V € R**"¥9» is a tensor that encodes d,-dimensional node
attributes across t time points. E € R**™*™ is a binary tensor where E(i, u,v) = 1
if there is an edge between node u and node v at time i. A € RI*Xmxnxde ig g
tensor that encodes d.-dimensional edge attributes across ¢ time points.

Node classification in temporal graphs. Given a temporal graph G =
(V,V,E, A) representing historical transactions and Y as a set of possible node
labels, the goal is to predict labels Y (u) for each node u € V.

In the following discussion, we focus on the cases where node labels are static
for the ease of presentation. Note that with minor modification, our technique
can easily be adapted for the cases where node labels dynamically evolve. We
approach this problem by inductive supervised learning. In the training phase,
we are given a temporal graph Gyqi, With training labels Y qin. In the testing
phase, we use the trained model to infer node labels in testing graph Gies-
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Fig. 2. The frameworks of TSNet. We utilize the two-step formulation of node classifi-
cation problem. The sparsification network takes the temporal graph as input and gen-
erates sparsified subgraphs drawn from a learned distribution. The temporal-structural
network extracts temporal and structural features simultaneously with the sparsified
subgraph as input.

3 TSNet Overview

In this section, we start with a theoretical overview of the proposed TSNet.

3.1 A Two-step Framework

Given input temporal graph G and node label matrix Y, our objective is to
learn P(Y | G). Current Graph Neural Networks (GNNs) [13, 11, 25] learn node
representation by aggregating node neighborhood features. However, in large
and complex temporal graphs, node neighborhood tends to be dense with much
noise which introduces high overfitting risk to existing approaches. To tackle
the challenge, we leverage the two-step framework proposed in [34] to break
node classification problem down into two steps: graph sparsification step and
representation learning step.

PY|G)~ Y P(Y|9PglG)~ Y QoY |9)Qs(9|G) (1)

9g€Sa g€Sa

where g is a sparsified subgraph, and S¢g is a class of sparsified subgraphs of
G. We approximate the distributions by tractable functions Qg and Q4. With
reparameterization tricks [10], we could differentiate the graph sparsification
step to make efficient backpropagation. In the following, we will introduce our
framework to find approximation function Q4(g | G) and Qe (Y | g).

3.2 Architecture

As shown in Figure 2, the proposed T'SNet consists of two major sub-networks:
sparsification network and temporal-structural convolutional network.
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— The sparsification network is a multi-layer neural network that implements
Qs(g | G): Taking temporal graph G as input, it generates a random sparsified
subgraph of G drawn from a learned distribution.

— The temporal-structural convolutional network implements Qg(Y | g)
that takes a sparsified subgraph as input, extracts node representations by
convolutional filtering on the temporal-structural neighborhood of each node,
and makes predictions on node labels.

With differentiable operations in both sub-networks, our TSNet is an end-to-end
supervised framework, which is trainable using gradient-based optimization.

4 Sparsification network

In this section, we present the sparsification network, which optimizes temporal
graph sparsification for subsequent node classification tasks.

4.1 Design Goals

The goal of sparsification network is to generate sparsified subgraphs for tempo-
ral graphs, serving as the approximation function Q4(g | G). Therefore, we need
to answer the following three questions in the sparsification network.

1. As the essence of sparsification is to sample a subset of edges, how should we
represent each edge so that we can differentiate edges for edge sampling?

2. What is the class of sparsified subgraphs S¢? How to sample such sparsified
subgraphs?

3. How to make sparsified subgraphs differentiable for end-to-end training?

4.2 Edge Representations

Given a temporal graph G = (V,V,E, A), an expected edge representation could
consist of its edge attributes and certain information from the two connected
nodes. Let N,, ; be the set of one-hop neighbors with respect to node u’s incoming
edges at time i. The expected edge representation X(i,u,v) for the edge from v
to u at time ¢ is calculated as follows.

X(i,u,v) = V' (i, u) [V (i, 0)[|AG, u, 0) (2)
where || indicates vector concatenation and A(7,u,v) denotes edge attributes.
V'(i,u) (V'(i,v)) is the representation of node u (v), which we calculate with
mean aggregation [11] to capture both attribute and structural information,

V'(i,u) = c(Wy, - V(i,u)|[|[MEAN(V(i,u'),Vu' € N, ;)) (3)

where Wy, is the weights to be learned and o is a nonlinear activation function.
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Fig. 3. An illustration of the proposed sparsification network. In this example, we focus
on the node u at time 7 with 3 neighbor nodes and set k as 2. Edge representations con-
sist of both edge attributes and node representations. We implement the sparsification
by a continuous relaxation of sorting and top-k important incoming edge sampling.

4.3 Sampling Sparsified Subgraphs

We focus on k-neighbor subgraphs for S¢i. The concept of k-neighbor subgraph is
originally proposed in the context of spectral sparsification for static graphs [23]:
Given an input graph, each node of a k-neighbor subgraph can select no more
than k edges from its one-hop neighborhood. In this work, we extend the concept
of k-neighbor subgraph to temporal graphs: Given a temporal graph G, each node
of a k-neighbor subgraph can select no more than k incoming edges from its one-
hop neighborhood in each graph snapshot of G. Without loss of generality, we
sketch this sampling process by focusing on a specific node u in graph snapshot
at time 7. Let N, ; be the set of one-hop neighbors with respect to u’s incoming
edges at time ¢ and the cardinality of N, ; is d.

1. For v € Ny 4, Ty = f4,(X(i,u,v)), where 7, is a scalar denoting the ranking
score of the edge from node v to u at time 7, and fy, is a feedforward neural
network (parameterized by ¢9) that generates the score based on the edge
representation X(i,u, v).

2. We sort the incoming edges based on their ranking scores, and select the
top-k edges with the largest ranking scores.

3. The above two steps are repeated for each node in each graph snapshot.

The parameters in fg, are shared among all nodes in all graph snapshots; there-
fore, the number of parameters is independent to the size of temporal graphs.

4.4 Making Samples Differentiable

The conventional sorting operators are not differentiable such that it is difficult
to utilize them for parameter optimization. To make sorting differentiable, we
propose to implement the subgraph sampling based on the continuous relaxation
of sorting operator [10]. Without loss of generality, we focus on a specific node
u at time ¢ in a temporal graph G. We implement the subgraph sampling in
Section 4.3 as follows.
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1.

Let N, ; be the set of one-hop neighbors with respect to u’s incoming edges
at time i. We apply the reparameterization trick and introduce a fixed source
of randomness [10] to the ranking score ry,, Vv € Ny, ;,

Tyv = log Tuo T Guo (4)

where 7, is a reparameterized scalar indicating the importance of the edge
from node v to w. gy, is a sample drawn from Gumbel(0,1) and gy, =
—log(—log(u)) with w ~ Uniform(0, 1). The reparameterization trick refines
the stochastic computational graph for smooth gradient backward pass.

. We relax the permutation matrix of the edge sorting operator P, € R4*4

for node u at time 4, and its j-th row is

15507,,5(]'7 (1) = softmax[((d + 1 — 2j)m,. — Az1)/7] (5)
where d is the cardinality of N, ; and 1 denotes the column vector of all ones.
A is the matrix of absolute pairwise differences of the elements in {v € N, ; |
Tuv }, and the element at z-row and y-column is A, (x,y) = |Tyg — Tuyl. T is &
hyper-parameter called temperature which controls the interpolation between
discrete distribution and continuous categorical densities.

. Before sparsification, the feature tensor of N, ; is Vy(i,u) = {V(i,u,u}),

o, V(i u,uy)}, where E(i,u,uj) = 1 and Vy(i,u) € R%>dn By applying
the relaxed sort operator Py, to the unsparsified node features Vy (i, u), we
then select first k rows as the output

Vs(i,u) = [PsortVu (i, w)](: &y 2) (6)

If Ny, ;| <k for node u, we will skip its sparsification and take all in Vi (i, u).

Algorithm 1 Sampling subgraphs by sparsification network

Input: Temporal graph G = (V,V,E, A) and integer k.

1:
2:

10:
11:
12:

fori=1,---,t do
for u € V do

if |N, ;| > k then
for v e N, ; do
compute X(i,u,v) by Equation (2)
compute m,, by Equation (4)
end for
compute Pt by Equation (5)
compute Vg(i,u) by Equation (6)
end if
end for
end for

We sketch the full algorithm of sparsification network in a combinatorial

manner in Algorithm 1. Let d be the average degree, n be the total number of
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nodes in a temporal graph, and ¢ be the number of snapshots. The sparsification
network visits each node’s one-hop neighborhood and makes d? calculations. The
complexity of sampling subgraphs by the sparsification network is O(d?nt).

5 Temporal-Structural Convolutional Network

As discussed in Section 3.1, the goal of the temporal-structural convolutional
network (T'SCN) is to serve as Qg(Y | g): it extracts node representations from
the sparsified subgraphs generated by the sparsification network and leverages
the vector representations to perform node classification. Inspired by the success
of convolutional aggregation in the graph domain [11, 13, 4, 25], the core idea be-
hind the temporal-structural convolutional network is to simultaneously extract
local temporal and structural features for node representations by convolutional
aggregation in individual nodes’ temporal-structural neighborhood.

5.1 Temporal-structural Neighborhood

Unlike the neighborhood defined in static graphs that only tells “who are close to
me”, temporal-structural neighborhood stores information about ”who and when
are close to me”. To accomplish this, we extend the notion of neighborhood to
the temporal domain by aggregating the structural neighborhood across several
preceding and/or subsequent snapshots of any given snapshot. Given a node u
at time ¢, its temporal-structural neighborhood can be represented by a matrix
F,; € R™" where F, ;(j,v) = 1 if node v is in u’s (structural) neighborhood
at time j; otherwise, F, ;(j,v) = 0. In this work, we focus on the first-order
temporal-structural neighborhood in the sparsified subgraphs. In other words,
we have F, ;(j,v) = 1 if the following two conditions hold: (1) | — j| = 1,
and (2) at time j, there is an incoming edge from node v to u in the sparsified
temporal graph. Note that node u at time ¢ is also in its own temporal-structural
neighborhood, that is, F, ;(i,u) = 1. With the notion of the temporal-structural
neighborhood, we are ready to introduce the design of a temporal-structural
convolutional layer.

5.2 Temporal-structural Convolutional Layer

A temporal-structural convolutional layer performs feature aggregation in indi-
vidual nodes’ temporal-structural neighborhood. One could stack multiple con-
volutional layers to extract higher-order temporal-structural features.

Without loss of generality, we discuss the technical details of temporal-
structural convolutional layer by focusing on a specific node u at time ¢ in the
p-th convolutional layer. The input is a temporal graph G = (V,V,E, A), node
representations HP-D ¢ RE*%4™ and a relaxed sort operator ]550” from
Section 4.4. With the same sort operator in Equation 6 that sparsifies the node
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features of the first convolution layer, we obtain the sparsified node features of
the p-th convolutional layer as

VP (i, u) = (HP D (G u,uh), . HOD (6w, uly)} (7)

VP (i, u) = [PaorVE (i, )] (: k. ) (®)

The temporal-structural convolution performs as follows.

HOGuw=o( Y VPG uoW®, ) 9)
{(4,v)|Fu,i(j,v)=1}

where o(-) is a non-linear activation function, H?) e R4 s the output

¢ RAPY xd

node representations, and w® is a customized convolution

i,U,,V
filter generated by
Wi(’z),j,y = MLP@(S)_ (Vg)) (Za u)) V,(Sp) (.]7 U)v A(.]v u, U)) (10)

where MLP ) (+) is a multi-layer neural network with parameters 9511 )J that gen-
i—j

erates customized convolutional filters based on node and edge features. In other

words, in the case of first-order temporal-structural neighborhood, we utilize

three networks MLPG(p>, MLPa(p), and MLPa(p) to model the temporal impacts
-1 0 1

from the temporal-structural neighborhood. Note that {9931), Gép ), 9§p )} are the
only parameters in this convolutional layer and are shared by all nodes; there-
fore, the number of parameters in a temporal-structural convolutional layer is
independent of the number of nodes, edges, or time points in a temporal graph.

As described in Equation 9 and 10, for a single node, the computational
cost is determined by the MLP structure as a fixed number (c). Therefore, the
complexity of convolution layer is O(cdtn) and is generally proportional to the
number of nodes (n).

5.3 Network Architecture
Now we present the full temporal-structural convolutional network.

— Convolutional layer. As discussed in Section 5.2, one could stack multiple
convolutional layers to hierarchically explore high-order temporal-structural
neighborhood.

— Pooling layer. Let H®) € R**n*d” be the output node representations from
the p-th convolutional layers. The pooling layer performs another round of

(p)
n

aggregation in temporal domain by H = Pooling(H(”)) , where H € R
Possible pooling operations include maz, average, and sum [11].

— Output layer. This layer employs a multi-layer neural network and the final
output of TSNet is Y = MLPy_(H), where 0, denotes the parameters.
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— Objective function. To handle the estimation variance brought by random
sampling, the sparsification network generates [ sparsified subgraphs and we
optimize the parameters in TSNet by minimizing the average loss from the [
samples. In particular, the objective function is formulated as follows.

J =

o~ =

1
> L(Y.Y) (11)
i=1
The function L is defined by cross entropy loss.

6 Experimental Study

In this section, we evaluate the performance of TSNet using real-life temporal
graph datasets from multiple domains. In particular, we compare TSNet with
state-of-the-art techniques in terms of classification accuracy and analyze its sen-
sitivity to the hyper-parameters. Moreover, we provide a case study to demon-
strate how sparsified subgraphs generated by TSNet could improve visualization.
The supplementary material contains more detailed information.

6.1 Datasets

We employ four temporal graph datasets from different domains, including col-
laboration networks, online social media, and financial marketing. The dataset
statistics are summarized in Table 1.

Table 1. Dataset statistics

DBLP-3 DBLP-5 Reddit Finance

# nodes 1,662 5,994 128,858 45,542
# edges 33,808 113,062 29,009,401 661,586
# snapshots / # in training 10/5 10/5 31/16 36/18
time granularity 1 Year 1 Year 1 Day 1 Month
# classes 3 ) 10 2

DBLP-3/5. The temporal graphs record co-author relationships in the DBLP
computer science bibliography® from 2001 to 2010, where nodes represent au-
thors and edges denote co-author relationships. There are 10 graph snapshots
and each snapshot stores co-author relationships within one year. To generate
the node attributes, we aggregate titles and abstracts of the corresponding au-
thor’s papers published in that year into one document, represent this document

3 https://www.aminer.cn/citation
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by the bag-of-words model. We aim to classify authors in DBLP-3 and DBLP-5
into three and five research areas respectively. The first 5 snapshots are in G¢pqin -

Reddit. Reddit is a large online forum, where users contribute original posts
or make comments/upvotes to existing posts. We extract posts and comments in
10 mid-sized subreddits in May 2015. Following the procedure in [11], we build
a post-to-post temporal graph, where nodes are posts, and two posts become
connected if they are both commented by at least one identical user. For node
attributes, we aggregate the post and comment texts into one document, repre-
sent it by the bag-of-words model, and reduce the dimensionality to 20 by PCA.
On this dataset, our goal is to classify each post into one of the 10 subreddit
categories. The first 16 snapshots are in Gypqin.

Finance. This private dataset contains temporal graphs that record trans-
action history between companies from April 2014 to March 2017. Each node
represents a company and each edge indicates a transaction between two compa-
nies. Node attributes are side information about the companies such as account
balance, cash reserve, etc., which may change from year to year. In this dataset,
we aim to classify companies into two categories: promising or unpromising for
investment in the near future. We put the first 18 snapshots in Gy, qin-

6.2 Baseline Methods

We implement four categories of baselines: (1) node classification methods for
static graphs, including GCN [13], GraphSAGE [11], GAT [25], and LDS [§]
that simultaneously learns the graph structure and GCN parameters; (2) stack-
ing structural and temporal feature learning models, including TempCNN-
GCN that extracts temporal features with temporal CNN [2] and then trains
GCN model on static graphs, GCN-TempCNN in reverse order, and Deepwalk-
LSTM that extracts structure features by DeepWalk [21] and then leverages
LSTM to learn temporal features; (3) temporal graph learning models, includ-
ing DynamicTriad [35], and STAR [27]; (4) variants of the proposed TSNet
models, including TSCN that only uses temporal-structural convolutional net-
work, SS-TSCN that samples subgraphs with spectral sparsification [23], and
DE-TSCN that employs DropEdge [22] as graph sampling method.

6.3 Experimental Settings

TSNet. In our experiments, the hyper-parameter k is searched between 3 and
15 for the optimal performance. For the temporal-structural convolutional net-
work, it starts with two temporal-structural convolutional layers, with an inter-
nal single-layer feedforward network to generate convolutional filters. Then the
output features pass a max-pooling layer over time and a non-linear layer which
produces the logit for label prediction.

Dataset split and accuracy metrics. We prepare the training and testing
temporal graphs following the similar setting in [11]. We split the snapshots of
temporal graphs into Gyrein and Gyess: test graphs remain unseen during train-
ing. We randomly sample 80% nodes in Gy,q;n as the training nodes and provide



12 C. Zheng et al.

Table 2. Node classification performance

DBLP-3 DBLP-5 Reddit Finance
Macro-F1|{Micro-F1|Macro-F1|Micro-F1|Macro-F1|Micro-F1|Macro-F1|Micro-F1
GCN 0.862 0.859 0.679 0.678 0.357 0.290 0.480 0.464
GraphSAGE 0.850 0.847 0.814 0.814 0.399 0.336 0.496 0.448
GAT 0.875 0.863 0.821 0.830 - - 0.509 0.495
LDS 0.876 0.869 0.797 0.794 - - 0.499 0.474
TempCNN-GCN | 0.851 0.857 0.720 0.710 0.411 0.340 0.532 0.548
GCN-TempCNN | 0.676 0.691 0.720 0.711 0.384 0.313 0.440 0.397
DeepWalk-LSTM| 0.913 0.913 0.772 0.777 0.370 0.303 0.493 0.446
DynamicTriad 0.753 0.745 0.713 0.717 0.393 0.324 0.419 0.430
STAR 0.908 0.908 0.811 0.815 0.439 0.367 0.541 0.502
TSCN 0.942 0.929 0.850 0.845 0.466 0.406 0.559 0.537
SS-TSCN 0.839 0.835 0.807 0.805 0.418 0.351 0.465 0.445
DE-TSCN 0.875 0.888 0.801 0.792 0.391 0.343 0.538 0.487
TSNet 0.954 0.955 0.859 0.860 0.475 0.416 0.630 0.610

their labels to the models. We test the performance of the models with all nodes
in Gest- We evaluate the classification accuracy using macro-F1 and micro-F1
scores . The results show the average of 10 runs with random initializations.

6.4 Classification Accuracy

Table 2 summarizes the classification performance of TSNet and the baseline
methods on all datasets. For DBLP-3, DBLP-5, Reddit, and Finance, the hyper-
parameter k is set as 8, 9, 10, and 5, respectively. The hyper-parameter [ is
set as 1 in this experiment. Note some results on Reddit is missing due to the
out-of-memory error.

Overall, TSNet consistently outperforms all of the baseline methods in terms
of macro-F1 and micro-F1 over all of the datasets. We make the following ob-
servations. (1) Compared with the deep learning techniques for static graphs,
including GCN, GraphSAGE and GAT, TSNet achieves better performance by
effectively utilizing temporal features in graphs. (2) In GCN-TempCNN and
Deepwalk-LSTM, structural and temporal features are extracted from separate
components. Because of the inter-component dependency, it becomes harder to
adjust the parameters in structural feature learning than in temporal feature
learning. Similarly, in TempCNN-GCN, parameters in temporal feature learn-
ing are harder to get trained. With temporal-structural convolution, TSNet can
simultaneously adjust parameters for temporal and structural feature learning,
and generate more effective features for better classification accuracy. (3) In
comparison with LDS, SS-TSCN and DE-TSCN, TSNet outperforms because
of the explicit supervision from downstream tasks, which shows that the spar-
sification network learns to sparsify temporal graphs to favor the subsequent
classification. (4) The comparison with TSCN is interesting: using the sparsified
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Fig. 4. Accuracy vs hyper-parameter k and [

subgraphs from the sparsification network, it is easier to make TSCN generalized
to unseen testing data with improved classification performance. (5) Compared
with DynamicTriad and STAR, TSNet is more effective in node representations
customized by the simultaneous learning of temporal and structural features.

6.5 Sensitivity to Hyper-parameters

Figure 4(a)-(d) demonstrates how classification accuracy responds when k in-
creases from 3. Over the four datasets, we observe a common phenomenon: there
exists an optimal k that delivers the best classification accuracy. When k is small,
TSNet can only make use of little structural information, which leads to sub-
optimal performance. When k gets larger, the temporal-structural convolution
involves more complex neighborhood aggregation with higher overfitting risk,
which negatively impacts the classification performance for unseen testing data.
By comparing across datasets, we observe that the optimal k is associated with
the average node degrees of the temporal graphs: higher k£ in dense Reddit graph
and lower k in sparse Finance graph. Figure 4(e) shows how hyper-parameter [
impacts classification accuracy on DBLP-3 and DBLP-5. When [ increases from
1 to 5, we observe a relatively small improvement in classification accuracy. As
the parameters in the sparsification network are shared by all edges in the tem-
poral graphs, the estimation variance from random sampling could already be
mitigated to some extent by a number of sampled edges in a sparsified subgraph.
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Fig. 5. One-hop neighborhood of Thomas S. Huang in DBLP-5. The visualization
presents snapshots from (a) 2005, (b) 2008, and (c) 2010. Node colors indicate node
labels from ground truth. Sparsification network selects edges with solid red lines. The
sparsified graph supports downstream classification as well as model interpretation.

6.6 Case Study

In this section, we present a case study to demonstrate the potential of TSNet
in enhancing model interpretation and visualization. Figure 5 visualizes the one-
hop neighborhood of Thomas S. Huang with k set as 7 in DBLP-5 temporal
graph, and we only present snapshots from 2005, 2008, and 2010 due to space
limitation. We make the following observations from Figure 5. First, the central
author is from the area of computer vision, and all selected edges also connect to
authors from computer vision. When neighbors share identical labels consistently
over time, temporal-structural features could boost the confidence of making
classification decision. Second, instead of exploring all the neighbors, we can only
focus on a subset of selected neighbors, which could make it easier for human
experts to conduct the effort on model interpretation and result visualization.

7 Related Work

Our research is related to three lines of studies: graph sparsification, deep learn-
ing on graphs, and temporal graph modeling.

Graph sparsification. The goal of graph sparsification is to find small sub-
graphs from input large graphs that best preserve desired properties. Exist-
ing techniques are mainly unsupervised and deal with simple graphs without
node/edge attributes for preserving predefined graph metrics [12], information
propagation traces [20], graph spectrum [23, 1], node degree distribution [7], node
distance distribution [14], or clustering coefficient [19]. Importance based edge
sampling has also been studied in a scenario where we could predefine the im-
portance of edges [4]. Unlike existing sparsification methods, our method aims
to optimize temporal graph sparsification with rich node and edge attributes by
supervision signals from subsequent classification tasks.
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Deep graph learning. Deep graph learning has made steady progress on
automated node representation learning. Early studies [6, 3] investigate convo-
lutional filters in graph spectral domain under transductive settings. To enable
inductive learning, convolutional filters in graph domain are proposed [13,25].
The graph feature learning models based on message passing mechanisms are also
referred to as GNNs. Multiple latest studies [18, 24] extend the GNNs into tempo-
ral graphs by introducing the recurrent operations into the GNN layers. Recent
efforts also attempt to sample subgraphs from predefined distributions [31, §],
and regularize graph learning by random edge dropping [22]. Our research in-
vestigates node representation learning in the temporal structural domain for
general temporal graphs, where both node/edge attributes and graph topology
could evolve over time. More importantly, our work answers a unique question:
Given a limited budget for edge selection, how to optimize graph sparsification
so that we could maximize performance in subsequent classification tasks.

Temporal graph modeling. It is an important yet challenging task to
model dynamics and evolution in temporal graphs [9, 28, 27]. Recent studies at-
tempt to model dynamics in temporal graphs using generative methods [9], ma-
trix factorization [15], and deep learning approaches [28,29]. The model in [29]
fuses the sequential and spatial graph convolution in a ”sandwich” structure,
which is yet dependent on the convolution order of sub-structure [26]. The ST-
GCN model in [28] learns both spatial and temporal patterns by adding all
temporally connected nodes into temporal kernels and conduct similar convo-
lution as GCN [13] on skeleton graph with static topology. Comparing with
these approaches, our model TSNet is novel as it can extract the temporal and
structural features simultaneously and separate the temporal impact of different
convolution filters.

8 Conclusion

In this paper, we propose Temporal Structural Network (TSNet) for node classi-
fication in temporal graphs. TSNet consists of two major sub-networks: (1) the
sparsification network sparsifies input temporal graphs by sorting and sampling
edges following a learned distribution; (2) the temporal-structural convolutional
network performs convolution on the sparsified graphs to extract local features
from the joint temporal-structural space. As an end-to-end model, the two sub-
networks in TSNet are trained jointly and iteratively with supervised loss, gradi-
ent descent, and backpropagation techniques. In the experimental study, TSNet
demonstrates superior performance over four categories of baseline models on
public and private benchmark datasets. The qualitative case study suggests a
promising direction for the interpretability of temporal graph learning.
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