
2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 636

Towards Robust Graph Neural Networks
via Adversarial Contrastive Learning

Shen Wang1,∗, Zhengzhang Chen2,†, Jingchao Ni1, Haifeng Chen2, and Philip S. Yu3
1Amazon, USA

{shenwa, jingchni}@amazon.com
2NEC Laboratories America, USA
{zchen, haifeng}@nec-labs.com

3Department of Computer Science, University of Illinois at Chicago, USA
psyu@uic.edu

Abstract—Graph Neural Network (GNN), as a powerful repre-
sentation learning model on graph data, attracts much attention
across various disciplines. However, recent studies show that
GNN is vulnerable to adversarial attacks. How to make GNN
more robust? What are the key vulnerabilities in GNN? How to
address the vulnerabilities and defend GNN against the adver-
sarial attacks? Adversarial training has shown to be effective in
improving the robustness of traditional Deep Neural Networks
(DNNs). However, existing adversarial training works mainly
focus on the image data, which consists of continuous features,
while the features and structures of graph data are often discrete.
Moreover, rather than assuming each sample is independent and
identically distributed as in DNN, GNN leverages the contextual
information across the graph (e.g., neighborhoods of a node).
Thus, existing adversarial training techniques cannot be directly
applied to defend GNN.

In this paper, we propose ContrastNet, an effective adversarial
defense framework for GNN. In particular, we propose an
adversarial contrastive learning method to train the GNN over
the adversarial space. To further improve the robustness of GNN,
we investigate the latent vulnerabilities in every component of
a GNN encoder and propose corresponding refining strategies.
Extensive experiments on three public datasets demonstrate the
effectiveness of ContrastNet in improving the robustness of
popular GNN variants, such as Graph Convolutional Network
and GraphSage, under various types of adversarial attacks.

Index Terms—graph neural network, adversarial defense, ad-
versarial training, contrastive learning

I. INTRODUCTION

Graph Neural Network (GNN) has received wide attention
[5], [9], [11], [13], [18], [22], [39], [40], [42], [44], [49] in
the past few years. It extends the traditional neural networks
to graph structured data. The goal of GNN is to learn the rep-
resentation of the graph, in the node level or graph level, via a
neural network consisting of a neural graph encoding function.
Because of its remarkable graph representation learning ability,
GNN has been explored in various real-world applications,
such as physics system [1], [15], healthcare [6], [27], [34],
chemistry [10], [52], recommender system [2], [29], [43], [48]
and security system [4], [24], [41], [47].

∗ Work was done during an internship at NEC Laboratories America.
† Corresponding author.

However, recent studies [8], [53], [54] have found that
GNN can easily be compromised by adversarial attacks. These
adversarial attacks are often stealthy and only require small
perturbations (e.g., by adding or dropping edges) of the graph
structure and/or node features to induce GNN to make incor-
rect predictions for some specific nodes with high confidence.
This makes it highly risky for those aforementioned domains
that GNN applies, especially security and financial applica-
tions, because the vulnerabilities of GNN could potentially
open the backdoor for the attackers. For example, fraudsters
could try to disguise themselves by connecting other normal
users.

Despite recent advances in adversarial attacks [8], [53],
[54], the question of how to build a robust GNN against the
adversarial attacks has not been satisfyingly addressed yet.
Nonetheless, some methods have been proposed to improve the
robustness of traditional Deep Neural Networks (DNNs) [7],
[12], [17], [23], [26], [31]–[33], [35], [36], [45]. They fall
into three main categories: (1) adversarial training meth-
ods [12], [26], [31] , (2) adversarial perturbation removing
methods [35], and (3) smoothness enforced methods [32].
However, these defense work only focus on either image
data [7], [12], [23], [26], [31], [33], [35], [36], in which
the data are independently and identically distributed in the
continuous feature space. In contrast, the structure and the
node feature of graph data are often discrete and each node
is related to its neighborhood. Thus, directly adopting the
existing defense methods for defending GNN will not work.
Different from defending the traditional DNNs, defending the
GNN has two major challenges: (1) the discrete unknown
adversarial space, and (2) the latent vulnerabilities from every
component of GNN.

Adversarial training, which augments the training data with
adversarial examples during the training stage [12], [26], [31]
has shown to be effective in defending traditional deep learning
methods against adversarial attacks. But as aforementioned,
the graphs are discrete and the combinatorial nature of the
graph structures makes it much more difficult to create adver-
sarial samples than the image. Thus, how to generate good
adversarial graph samples to augment the training data for
GNN is a non-trivial problem. Simply generating adversarial

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
10

51

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

637

samples from a noise distribution will not be able to tailor
toward the graph data. And the generated ineffectual adver-
sarial samples could even weaken the robustness of the model
against various adversarial attacks.

In addition to the discrete unknown adversarial space, the
vulnerabilities of GNN can come from components of its
unique architecture: the aggregator and the updater [50]. As the
main strength of GNN, the aggregator computes the new node
representation by leveraging context information to cover the
graph structure besides the node attributes. However, the ag-
gregator can be vulnerable because the node representation de-
pends not only on its feature but also on its neighborhood [18].
[53] has shown that the attack can be conducted without
touching the target node, since the attack on the neighbors may
propagate to the target node that is not attacked. Another vul-
nerability can be related to the updater, which is employed to
connect the current layer of the network to its previous layers,
so that more structural information can be covered. Recently,
GNNs, such as GraphSage, leverage the skip-connection [13]
to aggregate the representation from the predecessor layer
and drop the rest of intermediate representations during the
information propagation within k-hop neighbors. However,
stacking multiple such layers could also propagate the noisy
or adversarial information from an exponentially increasing
number of expanded neighboring member [18]. Only consid-
ering the last layer of representation may be vulnerable to the
potential noise. Another vulnerability is related to the input
dimension. As shown in [37], there is a one-to-one relationship
between the adversarial vulnerability and the input dimension,
such that the adversarial vulnerability increases with the input
dimension. By noticing the vulnerabilities caused by different
components, it needs to improve their robustness to adversarial
attacks.

To tackle the aforementioned two challenges, in this paper,
we propose ContrastNet, an effective contrastive learning
based framework for defending Graph Neural Network (GNN)
against adversarial attacks. In particular, to train a robust
GNN, we propose ACL, an adversarial contrastive learning
method instead of traditional supervised training. ACL models
the graph adversarial learning as a min-max optimization to
overcome the discrete unknown adversarial space problem,
and leverages the high-level graph representation as auxiliary
information to regularize the node representation learning.
Moreover, we investigate the vulnerabilities in the aggrega-
tor and the updater of a GNN encoder, and propose graph
encoder refining strategies including aggregator refining, up-
dater refining, and bottleneck refining to address those model
vulnerabilities. To evaluate the performance of ContrastNet,
we perform an extensive set of experiments on three public
graph datasets. The results demonstrate the effectiveness of our
proposed framework on defending the popular GNN variants,
such as Graph Convolutional Network (GCN) and GraphSage,
against various types of adversarial attacks.

In summary, this paper makes the following contributions:
• We propose ContrastNet, an effective contrastive learning

based framework for defending Graph Neural Network

(GNN) against adversarial attacks.
• We design ACL, a new training strategy to train GNNs

in an adversarial contrastive way to address the discrete
unknown adversarial space problem. We adopt a min-max
optimization to explicitly explore the adversarial space
and exploit the high-level graph representation as aux-
iliary information to regularize the node representation
learning.

• We investigate the latent vulnerabilities in each compo-
nent of a GNN encoder and propose three corresponding
refining strategies.

• The proposed framework is extensively evaluated on three
real-world graph datasets. The experimental results show
that our framework can effectively defend popular GNNs
against various types of adversarial attacks.

The rest of the paper is organized as follows. We introduce
some preliminaries and problem definition in Section 2. Sec-
tion 3 discusses our proposed adversarial defense framework
in detail. Section 4 provides the experimental results. Section
5 discusses the related work. Finally, Section 6 concludes the
paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we present the preliminaries and problem
definition of our work.

A. Notations

We use bold lowercase for vectors (e.g., a), bold capital
for matrices (e.g., A), and calligraphic letters for sets (e.g.,
A). A graph is represented by a triplet G = (V, E ,X),
where V = {v1, ..., vn} is the set of nodes, E ⊆ V × V
is the set of edges, and X ∈ Rn×d is a matrix. Its v-
th row, xv , representing the d-dimensional feature vector of
node v. Also, |V|= n and |E|= m are the number of nodes
and edges in G, respectively. Following the existing work on
adversarial attacks [53], in this paper, we consider graphs that
are undirected and discretely attributed and the Graph Neural
Network (GNN) is convolutional aggregator based1.

B. Graph Neural Networks

GNN is a neural network parameterized function fθ, which
leverages both graph structure and node feature to learn the
representation of node/graph for different tasks. Here θ is
the set of all parameters. Typically, fθ has a graph encoding
function ENC(·) as follows to generate the node embedding:

h(final)
v = ENC(h(0)

v , {h(0)
u }u∈Nv

) (1)

where h
(final)
v is the embedding vector of node v after K

iterations/layers, h(0)
v = xv is the original feature of node v,

and Nv is the set of neighboring nodes of v in graph G, i.e.,
Nv = {u|(u, v) ∈ E , (v, u) ∈ E}.

The encoding function is characterized by an aggre-
gator function Aggregator() and an updater function

1Attention based GNNs like Graph Attention Network or Gate updater
based GNNs like Graph LSTM won’t be covered by this work.

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

638

Updater() [50]. The aggregator aims to gather the neighbor-
hood information for each node, which encourages message
propagation within the graph. Formally, as shown in the
updater part of Fig.1, the k-th layer/iteration of a GNN is
described as follows:

a(k)v = Aggregator(k)({h(k−1)
u }u∈Nv

) (2)

h(k)
v = Updater(k)(a(k)v) (3)

where a
(k)
v is the aggregated representation of the node rep-

resentation h
(k−1)
v (at the (k − 1)-th layer) of node v.

Traditionally, the parameters of GNN fθ are trained in a
supervised manner. For example, considering node classifica-
tion, each node v has a label yv ∈ Y = {1, 2, ..., Y }. Then,
the goal is to learn a new representation of node v, which can
be used to predict the node label. In this case, the GNN is
define as f t

θ(G) = f t
θ(X,A) → y ∈ R, where t is the target

node indicator.

C. Adversarial Attack on GNNs

Given a graph G = (V, E ,X) and a GNN model fθ, fθ
is expected to perform good predictions on G (e.g., trans-
ductive classification) and on other graphs with a similar
distribution of G (e.g., inductive classification). The goal of
an adversarial attack is to maliciously transform G through a
perturbation function P () to a perturbed graph G′ = P (G) =
P (V ′, E ′,X′), such that the performance of the original model
fθ on the perturbed graph G′ drops dramatically. More pre-
cisely, in this work, we focus on direct targeted poisoning
attacks on both node feature and graph structure. Formally,
the adversarial attack is defined as follows:

arg max
G′=P (G))

maxc ̸=cold lnZ
∗
t,c − lnZ∗

t,cold

s.t. Z∗
t = fθ∗(G′) with θ∗ = argmin

θ
L(θ;G′)

(4)

The target is to find a perturbed graph G′ that classifiers
classify the target node as the new class c and has maximal
distance to ground truth class cold in terms of logits.

D. Problem Statement

In this work, we study the problem of adversarial defense
for GNN, that is to defend a GNN against the direct targeted
poisoning attacks. More formally, given a graph G and an
original GNN model fθ, our goal is to construct a robust model
f
(robust)
θ during the training phase, such that in the testing

phase, the f
(robust)
θ preserves its good performance on the

unseen perturbed graph G′.

III. PROPOSED METHOD

As discussed in the introduction, addressing the vulnera-
bilities and defending GNN against the adversarial attacks is
challenging due to discrete unknown adversarial space and
unique GNN architecture. To overcome these challenges, we
propose an adversarial defense framework ContrastNet with
two critical steps: Adversarial Contrastive Learning (ACL) and
Graph Encoder Refining (GER) as illustrated in Fig. 1. In the
ACL, our goal is to train GNN to be more distinguishable

between real benign samples and adversarial samples and
enhance its defensibility against adversarial attacks. And in the
GER, we aim to find the vulnerabilities in every component
of a GNN encoder, and propose corresponding strategies to
address these vulnerabilities. These two steps collectively
address the challenges of defending GNN against adversarial
attacks.

A. ACL: Adversarial Contrastive Learning

Adversarial training has shown to be effective in defending
traditional deep neural networks against adversarial attacks.
But as aforementioned, how to generate good adversarial graph
samples is still a very challenging problem. In this section, we
propose a novel adversarial training method for GNN.

Contrastive learning has been widely found useful for
representation learning of graph data [14]. Its objective can
be written as:

L = E(x+,y+,y−)[ℓ(x
+, y+, y−)] (5)

where (x+, y+) indicates a positive data pair and (x+, y−)
indicates a negative data pair. ℓ(x+, y+, y−) scores a pos-
itive tuple (x+, y+) against a negative one (x+, y−), and
E(x+,y+,y−) represents the expectation w.r.t. the joint distri-
bution over the positive and negative samples. Since negative
sampling is independent of the positive label, Eq. 5 can be
rewritten as:

L = Ep(x+)Ep(y+|x+)p(y−|x+)[ℓ(x
+, y+, y−)] (6)

= Ep(x+)[Ep(y+|x+)s(x
+, y+)− Ep(y−|x+)s(x

+, y−)] (7)

where s(x, y) measures the correlation between x and y.
p(y+|x+) denotes the probability of a positive tuple while
p(y−|x+) denotes the probability of a negative tuple.

Traditional graph embedding methods adopt a noise con-
trastive estimation approach and approximate p(y−|x+) with
a noise distribution probability pn(y), such that:

L = Ep(x+)[Ep(y+|x+)s(x
+, y+)− Epn

s(x+, y−)] (8)

However, using pn sacrifices the performance of learning
as the negative samples are produced based on a noise dis-
tribution. What is worse, using pn also harms the robustness
of the learning as the negative samples are produced without
considering the adversarial samples.

To address this problem, we model the negative sampler by
a generator under a conditional distribution g(y|x). Formally,
it is defined as follows:

L = Ep(x+)[Ep(y+|x+)s(x
+, y+)− Eg(y|x)s(x

+, y−)]. (9)

We optimize the above objective function in a minimax
adversarial learning manner as follows:

min
S

max
G

{Ep(y+|x+)[logS(x, y)]

+Eg(y|x)[log(1− S(G(x+, y−)))]}.
(10)

This formulation includes a discriminator S and an adversarial
sample generator G. Different from GAN, which generates
samples close to the given data, G generates adversarial

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

639

v

�7 �5

�1

�4

�2

�3

��2

��1

��3

��
�
(1)
�

Refined Graph EncoderG

�
�
�
��

�
�

��
�
(1

)
�

�
�

�

�
�
�

�
��

�
(1

)

�
�
�
�
�

��1

��3

��
�

(1)′

� ℎ
(1)′

�

Refined Graph Encoder
�

�
�
��

�
�

��
�
(1

)
�

�
�

�

�
�
�

�
��

�
(1

)

�
�
�
�
�

�
(�)′

�

�
�
�
��

�
�

��
�
(�

)
�

�
�

�

�
�
�

�
��

�
(�

)

�
�
�
�
�

v

�7 �5

�1

�4

�2

X

�3

G'

v

�7 �5

�1

�4

�2

�3

��2

��1

��3

��
�
(1)
� ℎ

(1)
�

Graph EncoderG

�
�
�
��

�
�

��
�
(1

)

�
�
�

�
��

�
(1

)

�
(�)
� ℎ

(�)
�

�
�
�
��

�
�

��
�
(�

)

�
�
�

�
��

�
(�

)
ℎ
(1)
� �

(�)
� ℎ

(�)
�

�
�
�
��

�
�

��
�
(�

)
�

�
�

�

�
�
�

�
��

�
(�

)

�
�
�
�
�

���������

�
�
�

�
�
�
�

ℎ�

�(,)ℎ
(�����)
� ℎ�

benign

�
�

�

ℎ
(�)′

�

�
�
�

�
�
�
�

ℎ′

�

�
�

�

�
��

����
��

�
��

�

�
�
�

��
�

�

Traditional
Supervised Training

Adversarial
Contrastive

Learning

�
����
�

loss

������
�

adversarial

�(,)ℎ
(�����)′

� ℎ′

�

Traditional GNN Workflow

ContrastNet Workflow

Graph Encoder Refining

�
�
����

�
�
��

ℎ
(�����)
�

�
�
����

�
�
��

ℎ
(�����)′

�

Fig. 1: Comparison between a traditional GNN workflow and ContrastNet workflow. ContrastNet contains two modules: Adversarial
Contrastive Learning (ACL) and Graph Encoder Refining (GER). The ACL takes the benign graph samples (e.g., G) and the adversarial
graph samples (e.g., G′) as the input to train the refined GNN over contrastive adversarial space. And the GER polishes the GNN with
mean-pooling aggregator (i.e., Aggregatormean()), dense-connected updater (i.e., Updaterdense()), and bottleneck layer (i.e., Bottleneck()).

samples as hard negative samples. The hard negative samples
can help to learn a better discriminator for distinguishing
the positive and negative pairs. The S and G are trained
in a joint way: we adjust the parameters of G to maximize
log(1 − S(G(x+, y−))) and adjust the parameters of S to
minimize logS(x, y), as if they follow the two-player minimax
game.

However, there is no constraint for the generator G, and
G is not tailored to the graph data. This may cause the
suboptimal quality of the generated adversarial samples since
the adversarial latent space cannot be effectively explored.
This limitation may affect the quality of the learned repre-
sentation. To overcome it, we adopt a conditional generator
configuration [28], which extends a conditional model where
the generator and discriminator are both conditioned on some
extra information. The extra information could be any kind of

auxiliary information, such as class labels or data from other
modalities.

The condition can be realized by feeding extra information
into both the discriminator and generator as an additional
input layer. As shown in Fig. 1, we consider the high-
level graph representation (e.g., graph embedding hG) as a
global constraint to regularize the node representation learning.
The motivation is based on the observation that global-level
representation such as graph embedding is less sensitive to
the adversarial perturbation than the local-level representation
such as node embedding [8]. Thus, the high-level graph
representation can be used to guide the robust learning of the
local node representation. Accordingly, the objective of our
adversarial contrastive learning becomes:

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

640

min
S

max
G

{Ep(y+|x+)[logS(h
(final)
v |hG)]

+Eg(y|x))[log(1− S(G(h
′(final)
v |h′

G)))]}
(11)

where h
′(final)
v and h′

G are the node and graph embeddings
from the generated adversarial samples G′ = (V ′, E ′,X′) =
P (G). Here, the perturbation function P () can be defined
similarly to [53].

To obtain the graph embedding, we employ a Read-
out function, Readout(). Given the node representations
{h(final)

v }v∈V of graph G, the Readout() performs a mean
pooling followed by a nonlinear mapping as follows:

hG = Readout(h(final)
v |v ∈ V) = σ(Wr(

1

n

n∑
i=1

h
(final)
i)))

(12)

where σ represents the sigmoid function, Wr represents a
trainable linear mapping matrix, n indicates the number of
nodes within the graph. This module follows the idea of using
the pooling function to compute the high-level representation
in CNN. The reason of using a mean pooling is that repre-
sentation generated by the mean operation is more stable and
less sensitive to the small-scale adversarial attacks.

For the discriminator, we employ a mutual information
estimator, MIE(), to jointly model the local and global graph
representations via a bilinear scoring function:

S(h(final)
v |hG) = MIE(h(final)

v ,hG) = σ(h(final)
v WDhG)

(13)

where MIE(h
(K)
v ,hG) represents the mutual information

between the node embedding and graph embedding. And
WD is a trainable scoring matrix and σ denotes the sigmoid
function.

B. GER: Graph Encoder Refining

To address the challenge of the intrinsic architecture of
GNN, we examine the vulnerabilities of every component of
a GNN encoder, and propose corresponding refining strategies
as shown in the lower part of Fig.1.

1) Aggregator Refining: As the first component of GNN,
the aggregator leverages the graph structure (i.e., the local
context of each node) to improve the GNN performance by
aggregating neighborhood. However, due to graph properties,
such as homophily [25], the representation of a single node can
easily be affected by its local context. Consequently, attackers
can compromise a node’s prediction without directly changing
its features and/or edges [53].

Typical neighborhood aggregators of GNN include
sum [46], max [13], and mean [18]. The sum aggregator
sums up the features within the neighborhood Nv to captures
the full neighborhood. The max aggregator generates the
aggregated representation by element-wise max-pooling. It
captures neither the exact structure nor the distribution of the
neighborhood Nv . Note as the size of the neighborhood Nv

can be different for different v, the mean aggregator averages
individual element features out. Different from the sum and

max aggregators, it can capture the distribution of the features
in the neighborhood Nv .

The adversarial attacks are usually stealthy and can only
perform small-scale modifications to the graph data. An ideal
aggregator should be robust to such subtle perturbations in
two folds: value and expressive power [46]. In the view of
the value, among the three aggregators, the max aggregator
is very sensitive to the distinct value modification (e.g., by
adding a new neighbor of a different class with a big value).
In contrast, the sum and mean aggregator are less sensitive to
the small-scale value modifications and thus is more robust to
adversarial attacks. Different neighborhood sizes of each node
will result in different denominators for the mean aggregator,
but the same one for the sum aggregator. In this case, the mean
aggregator is more robust. In the view of expressive power,
the sum aggregator has been proven to have more expressive
power than the mean aggregator and thus more sensitive to
the structure change.

Therefore, in our ContrastNet, for the GNN that uses the
sum or max aggregator, we refine its aggregator Aggregator()
by aggregating the neighborhood in a mean pooling manner,
instead of original sum or max pooling as shown in the middle
of Fig.1. Formally, it is defined as follows:

a(k)v = Aggregator(k)mean({h(k−1)
u : u ∈ Nv})) (14)

= ReLU(W(k) 1

|Nv|
∑
u∈Nv

h(k−1)
u) (15)

where k is the index of iteration/layer, |Nv| is the cardinality of
the neighborhood of node v, and a

(k)
v is the result of the mean

aggregation. W(k) is the trainable mapping matrix and ReLU
represents the rectified linear unit nonlinear gating function.

2) Updater Refining: The second important component of
GNN is updater, which helps to compute the new representa-
tion of each node.

Some GNN methods, such as GCN [18], simply use the
aggregated representation as the new representation for each
node. In this case, each node is updated as follows:

h(k)
v = Updater(k)(a(k)v) = a(k)v (16)

Some other GNNs, such as GraphSage [13], leverage the skip-
connection to combine the current aggregated representation
with the updated representation from the last iteration, such
that each node is updated as:

h(k)
v = Updater(k)(a(k)v) = [akv ;h

(k−1)
v] (17)

where [·; ·] represents the feature concatenation operation. This
skip-connection method gathers the representation from the
predecessor layer and drops the rest of intermediate represen-
tations during the information propagation within k-hop neigh-
bors. However, stacking multiple such layers could also prop-
agate noisy or adversarial information from an exponentially
increasing number of expanded neighboring members [18].

To address this problem, we propose to refine the updater
in a dense-connected style, as inspired by the DenseNet [16].
Our method keeps all intermediate representations and fuse

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

641

them together to compute the recent-layer representation. In
this way, the recent layer is connected with all previous
representations, allowing the subsequent layer to selectively
but adaptively fuse structure information from different hops.
Consequently, the robustness can be improved for deep GNN.
Formally, the dense-connected updater is constructed as fol-
lows:

h(k)
v = Updater(k)(a(k)v) = [akv ;h

(k−1)
v ;h(k−2)

v ; ...;h(1)
v].

(18)

3) Bottleneck Refining: In this section, we propose the
Bottleneck Refining to enforce the GNN to map the node rep-
resentation in a non-linearly low-dimension space. Particularly,
it consists of a bottleneck mapping followed by a nonlinear
mapping as shown in Fig.1.

Recent studies have empirically studied the one-to-one
relationship between the adversarial vulnerability and the input
dimensionality, and theoretically proved that the adversarial
vulnerability of neural networks deteriorates as the input
dimensionality increases [37]. On the other hand, it is common
that real data are not truly high-dimensional [20]. The data in
a high-dimensional space can be well embedded into a lower
dimensional space for both better effectiveness and efficiency.
Therefore, it is important to perform dimensionality reduction
on the input to improve the robustness of a GNN .

To this purpose, we propose a bottleneck refining strategy
to add a bottleneck perceptron after the last Updater(K) in
order to enforce the output dimensionality of GNN being
much lower than that of the input. Formally, the bottleneck
perceptron BPercep() is defined as follows:

h(final)
v = BPercep(h(K)

v) = ReLU((Wp)h
(K)
v) (19)

where Wp is the trainable mapping matrix map the final
layer of node representation into the lower dimensional space.
And ReLU represents the rectified linear unit nonlinear gating
function.

IV. EXPERIMENTS

In this section, we evaluate our proposed Contrast-
Net framework on three real-world graph datasets. We first
introduce the datsets used in the experiments, experiment setup
with attack models, compared methods and configuration.
Next, we show the effectiveness of the proposed ContrastNet .
We further conduct several experiments to show the effective-
ness of the adversarial contrastive learning and graph encoder
refining.

A. Datasets

TABLE I: The statistics of the datasets.

Dataset #Node #Edge #Feature #Class
Cora 2,810 7,981 1,433 7
Citeseer 2,110 3,757 3,703 6
PolBlogs 1,222 16,714 1,222 2

We use three benchmark datasets including two academic
networks (Cora and Citeseer) and a social network (PolBlogs)

for node classification tasks. We select the largest connected
component in each dataset for our experiments, and we split
each dataset randomly into a labeled set (80%) and an unla-
beled set (20%). We then further divide the labeled set into a
training set (50%) and a validate set (50%). Table I shows the
statistics of the prepossessed datasets.

B. Experiment Setup

1) Attack Models: We conduct three types of popular
adversarial attacks:

• RAND (a random perturbation attack): Given the target
node, it randomly adds edges to the pairs of nodes
that belong to different classes and/or deletes edges that
connect the pairs of nodes within the same class.

• FGSM [12] (a gradient based attack): It generates adver-
sarial examples based on the sign of gradient.

• NETTACK (a state-of-the-art optimization based at-
tack [53]): It generates adversarial perturbations by
searching the perturbation space.

The attack procedure is similar to [53]. We select 200 nodes as
the targets: 50 correctly classified nodes with high confidence;
50 correctly classified nodes but with low confidence; and 100
random nodes.

2) Compared Methods: To show the effectiveness of the
proposed ContrastNet framework on defending the adver-
sarial attacks, we compare it with a number of baselines
including two adversarial training methods (RD [8] and NCL),
a smoothness enforced method DIT [32], and variants of the
proposed ContrastNet.

RD [8] generates random samples from a noise distribution
and trains the GNN in a traditional supervised way. NCL
also generates random samples from a noise distribution, but
follows the way of Adversarial Contrastive Learning (ACL)
to train the GNN in a contrastive learning way. In contrast,
DIT [32] leverages model-specific strategies to enforce the
model smoothness. DIT is originally designed for the image
classification via CNN, but we extend it to solve the node
classification problem.

We evaluate our defense framework ContrastNet on two
most popular GNN variants: GCN [18] and GraphSage [13].
To evaluate ContrastNet and ACL, we use the original GNN
(O or OXXX) and the refined GNN after Graph Encoder
Refining GER (R or RXXX) as graph encoder, and consider
their variants in terms of adversarial learning methods: RD,
NCL, DIT, and ACL. To evaluate GER, we compare different
versions of GCN and GraphSage in terms of aggregator strate-
gies: XXXmean, XXXsum, and XXXmax; updater strategies:
XXXnone (simple updater as in Eq. 16), XXXskip (skip-
connected updater as in Eq. 17), and XXXdense (dense-
connected updater); bottleneck strategies: XXXlow (final layer
dimension is only half of the original dimension), XXXmid

(final layer dimension is exactly the same as the original
dimension), and XXXhigh (final layer dimension is twice of
the original dimension).

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

642

TABLE II: Performance comparison on GCN under various attacks.

Data Attack O ORD ODIT ONCL OACL R RRD RDIT RNCL RACL

C
or

a

Clean 0.90 0.85 0.85 0.88 0.89 0.88 0.84 0.85 0.88 0.92
RAND 0.60 0.71 0.75 0.72 0.81 0.73 0.72 0.76 0.80 0.85
FGSM 0.03 0.17 0.21 0.39 0.53 0.18 0.20 0.45 0.42 0.65
NETTACK 0.01 0.16 0.19 0.27 0.32 0.15 0.17 0.43 0.38 0.60

C
ite

se
er Clean 0.88 0.82 0.83 0.83 0.84 0.90 0.88 0.86 0.86 0.90

RAND 0.60 0.72 0.70 0.75 0.79 0.72 0.75 0.75 0.79 0.85
FGSM 0.07 0.22 0.25 0.44 0.62 0.20 0.25 0.27 0.52 0.70
NETTACK 0.02 0.05 0.19 0.38 0.52 0.16 0.20 0.22 0.45 0.65

Po
lB

lo
gs Clean 0.93 0.90 0.88 0.90 0.92 0.95 0.95 0.92 0.87 0.95

RAND 0.36 0.80 0.78 0.80 0.79 0.40 0.42 0.40 0.82 0.82
FGSM 0.41 0.46 0.43 0.49 0.60 0.50 0.52 0.48 0.58 0.74
NETTACK 0.06 0.10 0.12 0.43 0.58 0.18 0.22 0.20 0.52 0.65

TABLE III: Performance comparison on GraphSage under various attacks.

Data Attack O ORD ODIT ONCL OACL R RRD RDIT RNCL RACL

C
or

a

Clean 0.85 0.84 0.80 0.82 0.81 0.88 0.80 0.83 0.84 0.88
RAND 0.70 0.69 0.72 0.78 0.80 0.78 0.79 0.81 0.82 0.84
FGSM 0.18 0.19 0.29 0.40 0.61 0.25 0.26 0.28 0.48 0.67
NETTACK 0.16 0.17 0.25 0.38 0.57 0.22 0.23 0.22 0.42 0.60

C
ite

se
er Clean 0.83 0.81 0.80 0.80 0.80 0.86 0.84 083. 0.82 0.90

RAND 0.70 0.72 0.68 0.78 0.82 0.80 0.80 0.82 0.82 0.85
FGSM 0.10 0.14 0.18 0.32 0.52 0.22 0.24 0.26 0.50 0.70
NETTACK 0.04 0.08 0.16 0.30 0.48 0.18 0.18 0.28 0.48 0.65

Po
lB

lo
gs Clean 0.86 0.83 0.82 0.84 0.85 0.90 0.86 0.85 0.82 0.89

RAND 0.43 0.69 0.65 0.62 0.70 0.60 0.62 0.60 0.68 0.78
FGSM 0.40 0.43 0.40 0.48 0.50 0.48 0.46 0.50 0.59 0.72
NETTACK 0.14 0.16 0.20 0.45 0.56 0.20 0.25 0.28 0.55 0.68

3) Configuration: We repeat all the experiments over five
different splits of labeled/unlabeled nodes to compute the
average results. For GNNs used in the experiments, we set
the default number of layers as 4. We also adopt the Adam
optimizer with an initial learning rate of 0.01, and decay the
learning rate by 0.5 for every 50 epochs.

C. Evaluation of ContrastNet Framework and ACL

In this experiment, we show the effectiveness of the pro-
posed ContrastNet framework and the ACL module under
various attacks. To guarantee the powerfulness of the adver-
sarial attacks, we set the number of the perturbations as:
np = dv + 2 with dv to be the degree of the target node.
We report the fraction of the target nodes that get correctly
classified as accuracy.

The results in Table II and Table III show that the proposed
ACL method outperforms all the baselines including the single
GER, RD, DIT and NCL, in terms of datasets, GNN variants,
and attack models. We also observe that the original GCN
and GraphSage are both very vulernable to the attacks, but
after applying our ContrastNet framework, both of them
become way more robust. For example, GCN can achieve
an accuracy of 0.90 without any attack on Cora data, but
the performance significantly drops to 0.03 under the FGSM
attack, while RACL (i.e., GCN with ContrastNet) can still
achieve an accuracy of 0.65 as shown in Table II. Similarly,
for Citeseer dataset, under the NETTACK attack, the accuracy
of GraphSage drops from 0.83 to 0.04, while RACL (i.e.,
GraphSage with ContrastNet) can still maintain an accuracy
of 0.65 as shown in Table III.

D. Evaluation of GER

In this experiment, we show the vulnerabilities of the
GNN in terms of its aggregator, updater, and output. We also
demonstrate the effectiveness of GER in addressing these
vulnerabilities.

We test the robustness of different methods under the power-
ful NETTACK attack2 with various adversarial perturbations.
We use the classification margin score s as the metric for the
classifier performance:

s = Z∗
v,c

(gt)
v

−max
c ̸=c

(gt)
v

Z∗v,c (20)

where Z∗
v,c

(gt)
v

is the predicted probability for the ground-truth
label, while max

c̸=c
(gt)
v

Z∗v,c is the incorrect prediction prob-
ability with the largest confidence. The larger s is, the higher
confidence the classifier has in making a correct prediction.

From the experimental results shown in Fig. 2, we can see
that the GCN and GraphSAGE with our proposed GER per-
form better than the original version and the ones using other
aggregator or updater strategies. We can also observe that:
(1) The mean aggregator outperforms the sum and max ones;
(2) The dense-connected updater outperforms the case without
the layer-wise connection and the skip-connected one; (3) The
lower dimension of the final layer beats both the high and
medium ones, since the adversarial vulnerability of neural
networks deteriorates as the input dimensionality increases;
(4) Comparing GCN with GraphSage, the performance of the
latter one is less stable but sometimes better, due to the random

2NETTACK is more powerful than RAND and FGSM, thus due to the
space limitation, we only show the results of NETTACK in this experiment.

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

643

Fig. 2: Evaluation of the GER. This experiment is conducted with traditional supervised training.

neighborhood sampling; and (5) It is also worth noticing that
PolBlogs is difficult to attack, since the average degree of the
node is high.

V. RELATED WORK

In line with the focus of this work, we briefly review the
recent work on adversarial attack and defense on traditional
machine learning, and adversarial attack and defense on graph
neural networks.

A. Attack and Defense on Traditional Machine Learning

Recently, deep neural networks (DNNs) have been proven
to be highly sensitive to small adversarial perturbations [12],
[38]. Based on the attacker’s goals, the adversarial attack
can be categorized into poisoning attack and evasion attack,
where the poisoning attack’s target is the training data and
evasion attack’s target is the test data. Most of the previously
introduced work belong to the evasion attack. [19], [21], [30]
studied the problem of poisoning attack and proposed different
bi-level optimization solutions.

To defense against the adversarial attack and improve the
robustness of the traditional machine learning models, espe-
cially DNNs, a number of effects have been made. They

fall into three main categories: (1) adversarial training meth-
ods [12], [26], [31], (2) adversarial perturbation removing
methods [35], and (3) smoothness enforced methods [32].
However, these defense work mainly focus on either image
data [7], [12], [23], [26], [31], [33], [35], [36], which assumes
data are independently and identically distributed in the con-
tinuous feature space and can not be directly applied to GNNs.

B. Attack and Defense on GNNs
Recently, a few attempts have been made to study adversar-

ial attacks on GNNs. [8] proposed a non-target evasion attack
on node classification and graph classification. A reinforce-
ment learning method was used to learn the attack policy
that applies small-scale modification to the graph structure.
[53] introduced a poisoning attack on node classification.
This work adopted a substitute model attack and formulated
the attack problem as a bi-level optimization. Different from
[8], it attacked both the graph structure and node attributes.
Furthermore, it considered both direct attacks and influence
attacks. [54] proposed a meta-learning based non-targeted
poison attack method. [3] proposed a targeted poison attack
on a random walk based unsupervised node embedding.

To defend GNN against adversarial attacks, few initial
attempts have been made to study the robustness of GNN. For

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

644

example, Zügner and Günnemann [55] proposed a certification
model and robust training specifically for perturbation of the
discrete node attributes. [51] exploited the Gaussian distri-
bution as the node representation and proposed a variance-
based attention mechanism for neighborhood aggregation.
However, there is still limited understanding of why GNNs
are vulnerable to adversarial attacks and how to defend GNNs
against various adversarial attacks. Different from existing
methods, this work focuses on defending graph convolutional
based GNN against directed targeted poisoning attacks on both
discrete node feature and graph structure.

VI. CONCLUSION

In this paper, we presented ContrastNet, an adversarial
defense framework for Graph Neural Network (GNN). To train
a robust GNN, we proposed an adversarial contrastive learning
technique instead of traditional supervised training. We also
leveraged the high-level graph representation to constrain
the generation of the adversarial samples. To address the
vulnerabilities in the GNN architecture, we proposed the mean
aggregation, dense connection, and bottleneck strategies. We
evaluated the proposed framework using extensive experiments
on three real-world graph datasets. The experimental results
convince us of the effectiveness of our framework on de-
fending the popular GNN variants against various types of
adversarial attacks.

VII. ACKNOWLEDGEMENTS

Shen Wang and Philip S. Yu are supported in part by
NSF under grants III-1763325, III-1909323, III-2106758, and
SaTC-1930941.

REFERENCES

[1] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende,
and Koray kavukcuoglu. Interaction networks for learning about objects,
relations and physics. In NIPS, pages 4509–4517, 2016.

[2] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph
convolutional matrix completion. arXiv preprint arXiv:1706.02263,
2017.

[3] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on
node embeddings via graph poisoning. arXiv preprint arXiv:1809.01093,
2018.

[4] Lei Cai, Zhengzhang Chen, Chen Luo, Jiaping Gui, Jingchao Ni, Ding
Li, and Haifeng Chen. Structural temporal graph neural networks for
anomaly detection in dynamic graphs. In Proceedings of the 30th ACM
international conference on Information & Knowledge Management,
pages 3747–3756, 2021.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with
graph convolutional networks via importance sampling. arXiv preprint
arXiv:1801.10247, 2018.

[6] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F Stewart,
and Jimeng Sun. Gram: graph-based attention model for healthcare
representation learning. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 787–795. ACM, 2017.

[7] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Prov-
able robustness of relu networks via maximization of linear regions.
arXiv preprint arXiv:1810.07481, 2018.

[8] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and
Le Song. Adversarial attack on graph structured data. arXiv preprint
arXiv:1806.02371, 2018.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convo-
lutional neural networks on graphs with fast localized spectral filtering.
In NIPS, pages 3844–3852, 2016.

[10] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein
interface prediction using graph convolutional networks. In NIPS, pages
6530–6539, 2017.

[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. arXiv
preprint arXiv:1704.01212, 2017.

[12] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. ICLR, 2015.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In NIPS, pages 1024–1034, 2017.

[14] William L Hamilton, Rex Ying, and Jure Leskovec. Representa-
tion learning on graphs: Methods and applications. arXiv preprint
arXiv:1709.05584, 2017.

[15] Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In
NIPS, pages 2701–2711, 2017.

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In CVPR, pages
4700–4708, 2017.

[17] Robin Jia and Percy Liang. Adversarial examples for evaluating reading
comprehension systems. arXiv preprint arXiv:1707.07328, 2017.

[18] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[19] Pang Wei Koh and Percy Liang. Understanding black-box predictions
via influence functions. arXiv preprint arXiv:1703.04730, 2017.

[20] Elizaveta Levina and Peter J Bickel. Maximum likelihood estimation of
intrinsic dimension. In NIPS, pages 777–784, 2005.

[21] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data
poisoning attacks on factorization-based collaborative filtering. In
Advances in neural information processing systems, pages 1885–1893,
2016.

[22] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493,
2015.

[23] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu,
and Jun Zhu. Defense against adversarial attacks using high-level
representation guided denoiser. In CVPR, pages 1778–1787, 2018.

[24] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and
Le Song. Heterogeneous graph neural networks for malicious account
detection. In CIKM, pages 2077–2085, 2018.

[25] Ben London and Lise Getoor. Collective classification of network data.
Data Classification: Algorithms and Applications, 399, 2014.

[26] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[27] Chengsheng Mao, Liang Yao, and Yuan Luo. Medgcn: Graph
convolutional networks for multiple medical tasks. arXiv preprint
arXiv:1904.00326, 2019.

[28] Mehdi Mirza and Simon Osindero. Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784, 2014.

[29] Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric
matrix completion with recurrent multi-graph neural networks. In
Advances in Neural Information Processing Systems, pages 3697–3707,
2017.

[30] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Pau-
dice, Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. Towards
poisoning of deep learning algorithms with back-gradient optimization.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pages 27–38. ACM, 2017.

[31] Taesik Na, Jong Hwan Ko, and Saibal Mukhopadhyay. Cascade adver-
sarial machine learning regularized with a unified embedding. arXiv
preprint arXiv:1708.02582, 2017.

[32] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Anan-
thram Swami. Distillation as a defense to adversarial perturbations
against deep neural networks. In SP, pages 582–597, 2016.

[33] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and
James Storer. Deflecting adversarial attacks with pixel deflection. In
CVPR, pages 8571–8580, 2018.

[34] Sungmin Rhee, Seokjun Seo, and Sun Kim. Hybrid approach of relation
network and localized graph convolutional filtering for breast cancer
subtype classification. arXiv preprint arXiv:1711.05859, 2017.

[35] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan:
Protecting classifiers against adversarial attacks using generative models.
arXiv preprint arXiv:1805.06605, 2018.

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

645

[36] Lukas Schott, Jonas Rauber, Wieland Brendel, and Matthias Bethge.
Robust perception through analysis by synthesis. CoRR, abs/1805.09190,
2018.

[37] Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Schölkopf, Léon
Bottou, and David Lopez-Paz. Adversarial vulnerability of neural net-
works increases with input dimension. arXiv preprint arXiv:1802.01421,
2018.

[38] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[39] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[40] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò,
Yoshua Bengio, and R Devon Hjelm. Deep graph infomax. arXiv
preprint arXiv:1809.10341, 2018.

[41] Shen Wang, Zhengzhang Chen, Ding Li, Zhichun Li, Lu-An Tang,
Jingchao Ni, Junghwan Rhee, Haifeng Chen, and Philip S Yu. At-
tentional heterogeneous graph neural network: Application to program
reidentification. In Proceedings of the 2019 SIAM International Confer-
ence on Data Mining, pages 693–701. SIAM, 2019.

[42] Shen Wang, Zhengzhang Chen, Jingchao Ni, Xiao Yu, Zhichun Li,
Haifeng Chen, and Philip S Yu. Adversarial defense framework for
graph neural network. arXiv preprint arXiv:1905.03679, 2019.

[43] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu
Tan. Session-based recommendation with graph neural networks. arXiv
preprint arXiv:1811.00855, 2018.

[44] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S Yu. A comprehensive survey on graph neural
networks. arXiv preprint arXiv:1901.00596, 2019.

[45] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille.
Mitigating adversarial effects through randomization. arXiv preprint
arXiv:1711.01991, 2017.

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? arXiv preprint arXiv:1810.00826,
2018.

[47] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform binary
code similarity detection. In CCS, pages 363–376, 2017.

[48] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. Graph convolutional neural networks
for web-scale recommender systems. arXiv preprint arXiv:1806.01973,
2018.

[49] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L
Hamilton, and Jure Leskovec. Hierarchical graph representation learning
withdifferentiable pooling. arXiv preprint arXiv:1806.08804, 2018.

[50] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
and Maosong Sun. Graph neural networks: A review of methods and
applications. arXiv preprint arXiv:1812.08434, 2018.

[51] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph
convolutional networks against adversarial attacks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1399–1407, 2019.

[52] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling
polypharmacy side effects with graph convolutional networks. Bioin-
formatics, 34(13):i457–i466, 2018.

[53] Daniel Zugner, Amir Akbarnejad, and Stephan Gunnemann. Adversarial
attacks on neural networks for graph data. In SIGKDD, pages 2847–
2856, 2018.

[54] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph
neural networks via meta learning. arXiv preprint arXiv:1902.08412,
2019.

[55] Daniel Zügner and Stephan Günnemann. Certifiable robustness and
robust training for graph convolutional networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 246–256, 2019.

Authorized licensed use limited to: Amazon. Downloaded on August 31,2023 at 21:46:48 UTC from IEEE Xplore. Restrictions apply.

