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Abstract

We consider the models of deep multi-task learning with re-
current architectures that exploit regularities across tasks to
improve the performance of multiple sequence processing
tasks jointly. Most existing architectures are painstakingly
customized to learn task relationships for different problems,
which is not flexible enough to model the dynamic task rela-
tionships and lacks generalization abilities to novel test-time
scenarios. We propose multi-task recurrent modular networks
(MT-RMN) that can be incorporated in any multi-task recur-
rent models to address the above drawbacks. MT-RMN con-
sists of a shared encoder and multiple task-specific decoders,
and recurrently operates over time. For better flexibility, it
modularizes the encoder into multiple layers of sub-networks
and dynamically controls the connection between these sub-
networks and the decoders at different time steps, which pro-
vides the recurrent networks with varying degrees of parameter
sharing for tasks with dynamic relatedness. For the generaliza-
tion ability, MT-RMN aims to discover a set of generalizable
sub-networks in the encoder that are assembled in different
ways for different tasks. The policy networks augmented with
the differentiable routers are utilized to make the binary con-
nection decisions between the sub-networks. The experimental
results on three multi-task sequence processing datasets con-
sistently demonstrate the effectiveness of MT-RMN.

Introduction
Deep learning models with recurrent architectures have been
wildly studied for sequence processing tasks, such as se-
quence labeling (Lin et al. 2018; Cui et al. 2019), time series
analysis (Dennis et al. 2019; Guo, Lin, and Antulov-Fantulin
2019), spatio-temporal prediction (Wang et al. 2018; Zhou
et al. 2018; Sun et al. 2019) and question answering tasks (Ke,
Zolna et al. 2018). These models utilize a chain of repeating
cells to encode the global information of a sequence into a
word-level representation of its elements. Recent progresses
have been made on jointly learning multiple tasks to improve
overall performance by exploiting regularities across tasks
(Chen et al. 2018; Gupta, Chakraborty, and Chakrabarti 2019;
Cui et al. 2019; Lu, Bai, and Langlais 2019). Multi-task learn-
ing (MTL) not only helps reduce the risk of over-fitting to
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individual tasks, but also saves computation cost by shar-
ing model architectures and low-level representations (Ruder
2017; Zhang and Yang 2017; Ma et al. 2019; Stickland and
Murray 2019; Meyerson and Miikkulainen 2019).

The multi-task architectures applicable to recurrent models,
however, are underexplored in literature. Existing approaches
typically adopt the general architectures of multi-task learn-
ing to address sequence processing tasks. Most of them use a
set of task-specific decoders to extract task-specific knowl-
edge (Luong et al. 2016; Subramanian et al. 2018) and an
ad-hoc structure to store the knowledge shared by related
tasks (Chen et al. 2018), however, the task relationships are
not considered explicitly and the structure is usually pre-
defined, restricting the model capacity. It is also infeasible
when users have limited knowledge of the task relatedness.
Moreover, we highlight the dynamics of task relationships,
which indicates the strength of relatedness between tasks is
not static but subject to change, depending on the input data
at hand (Cui et al. 2019; Liu et al. 2019), such as the rela-
tionships between the POS tagging tasks of code-switched
sentences at different token positions (Gupta, Chakraborty,
and Chakrabarti 2019; Lu, Bai, and Langlais 2019). Existing
approaches are not flexible enough to learn the dynamic rela-
tionships, which calls for effective multi-task architecture that
is elaborately developed for recurrent models. In addition, for
more complex tasks of sequence processing, we conjecture
that the generalization ability is essential (Lake 2019; Goyal
et al. 2019), which helps the models handle the unseen tasks
that are common in the real-world applications (Chang et al.
2019; Huang, Nair et al. 2019; Purushwalkam et al. 2019).
Previous studies show that recurrent neural network models
generalize well when the training and test data is similar, but
fail spectacularly when generalization requires systematic
compositional skills (Lake and Baroni 2018; Loula, Baroni,
and Lake 2018). How to build recurrent neural architectures
with the compositional generalization abilities would consti-
tute a daunting challenge.

To address these challenges, we propose multi-task
recurrent modular networks (MT-RMN) that dynamically
learn task relationships and accordingly learn to assemble
composable modules into complex layouts to jointly solve
multiple sequence processing tasks. MT-RMN consists of a
shared encoder to store the knowledge shared by related tasks
and multiple decoders to extract task-specific knowledge. It
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Figure 1: Architecture of MT-RMN.

recurrently operates over time. MT-RMN is general and with
good compositional generalization ability. It is easy to be
incorporated in any multi-task recurrent model by combining
the extracted task-specific knowledge with the task-specific
output of the recurrent model.

Specifically, we employ modularity as a way of improving
adaptability and generalization to novel test-time scenarios
(Chang et al. 2019; Lake 2019; Pathak et al. 2019). The
encoder is modularized into layers of sub-networks and a
task-specific decoder consists of several sub-decoders. The
first layer of the encoder is a group of recurrent cells and other
layers consist of sub-encoders, representing a set of gener-
alizable sub-networks that are assembled in different ways
for different tasks. More importantly, modularity provides
flexibility for the recurrent model to capture the dynamics of
task relationships. The recurrent cells in MT-RMN operate
independently and are used to capture the dynamics origi-
nated from different feature subspaces, similar to (Goyal et al.
2019). By dynamically learning the connections between the
sub-networks of the encoder and the sub-decoders at different
time steps, MT-RMN selectively activates different parts of
the encoder for a task over time, which provides the recur-
rent networks with varying degrees of parameter sharing for
tasks with dynamic relatedness. The connections are learned
by decision policies (Guo et al. 2019; Ahmed and Torre-
sani 2019), which are sampled from discrete distributions
indirectly parameterized by the output of lightweight neural
networks called policy networks. These policies decide to
connect or disconnect the route between two sub-networks,
on a per-instance basis.

Intuitively, similar tasks are routed through similar paths
and dissimilar tasks are routed through different paths. This
enables the model to express tasks as a combination of sub-
tasks and to generalize to unseen categories by dynamically
routing a set of sub-encoders. As such, apart from reusabil-
ity and good generalization, modularity also provides in-
terpretability. Users can inspect how the network operates
to understand which tasks are deemed more related, and at
which time steps the task relatedness dramatically change, etc.
As the decisions are non-differentiable, we propose the dif-

ferentiable binary routers based upon the Gumbel-Softmax
reparameterization (Jang, Gu, and Poole 2017; Maddison,
Mnih, and Teh 2017) to train the policy networks, which are
jointly trained with other parts of the networks. MT-RMN
is first validated on a task-fMRI dataset, where we analyze
its ability to model task relationships dynamically and its
generalization ability, then applied to a part-of-speech tag-
ging dataset and a clinical time series dataset. Experimental
results verify the effectiveness of MT-RMN.

The MT-RMN Architecture
MT-RMN consists of a shared encoder and multiple task-
specific decoders as shown in Figure 1. The connection deci-
sions are made by policy networks augmented with straight-
through routers.

Shared Encoder
The shared encoder is motivated by modular networks
(Kirsch, Kunze, and Barber 2018; Pahuja et al. 2019). We
aim to discover a set of generalizable sub-networks that are
assembled in different ways for different tasks. The encoder
hasm layers and each layer ` ∈ {1, 2, ...,m} contains n` sub-
networks. The first layer is a group of independent LSTM
cells. Other layers consist of MLPs that are used as sub-
encoders.
Recurrent Independent Cells. Let xt be the input data at
time step t. We assume that the overall dynamical system of
interest is divided into k small subsystems (Goyal et al. 2019).
We use k recurrent cells to model these subsystems and each
cell has its own independent dynamics operating. The cell
denoted by Ci is flexible to use different RNN modules and
we use LSTM (Hochreiter and Schmidhuber 1997) in this
paper. The hidden state ht,i after cell Ci is applied is

ht,i = LSTMi(ht−1,i,xt; θi). (1)

Policy Networks for Sub-Encoders. We build a policy net-
work for each sub-encoder to make decision connections
between itself and the sub-networks of the previous layer.
Specifically, for sub-encoder j in layer `, policy network



Nj estimates a decision vector αt,ij ∈ R2 for every sub-
network i in layer `-1 at time step t, given the output ut,i of
sub-network i at time step t.

{Nj : ut,i → αt,ij |i ∈ {1, ..., n`−1}, j ∈ {1, ..., n`}} (2)

Routers. Given αt,ij , a straight-through router is used to
learn the decision policy Pij , which estimates a binary
decision value ζt,ij ∈ {0, 1}, indicating whether to con-
nect (ζt,ij=1) or disconnect (ζt,ij=0) the route between sub-
networks i and sub-encoder j at time step t.

{Pij : αt,ij → ζt,ij |i ∈ {1, ..., n`−1}, j ∈ {1, ..., n`}}
(3)

Calculation of Input and Output. Each sub-encoder j in
layer ` receives a list of n`−1 tuples of features from the sub-
networks in layer `-1, where tuple (ut,i, ζt,ij) corresponds to
sub-network i in layer `-1. The input vt,j and output ut,j of
sub-network j in layer ` are

vt,j =

n`−1∑
i=1

ζt,ij/(

n`−1∑
i′=1

ζt,i′ j)ut,i, (4)

ut,j =MLPj(vt,j). (5)

Task-Specific Decoders
Task-specific decoders share a similar idea with the encoder
and they selectively activate only parts of the encoder. Every
task-specific decoder Dk has m-1 independent sub-decoder
Dk

` , which are used to extract task-related knowledge from
different layers of the encoder. We use MLPs as the sub-
decoders in this paper. In particular, task-specific decoderDk

is used for task k and sub-decoder Dk
` is used to extract the

knowledge from the `-th layer of encoder. Because of the
domain specialization of different tasks (Cui et al. 2019), we
use different policy networks for different tasks.

The input and output calculation of the sub-decoder is sim-
ilar to the one of the sub-encoder. For sub-decoder Dk

` , we
use policy network N̂ k to estimate a decision βk

t,j ∈ R2 for
sub-encoder j in layer ` of encoder, i.e., {N̂ k : ut,j → βk

t,j},
where ut,j is the output of sub-encoder j. A router is fur-
ther used to learn a policy P̂k

j to estimates a binary decision
value, i.e., {P̂k

j : βk
t,j → ζ̂kt,j ∈ {0, 1}}. Thus, sub-decoder

Dk
` receives a list of tuples (ut,j , ζ̂kt,j), each of which corre-

sponds to a sub-encoder of layer `. The input and output of
sub-decoder Dk

` are v̂kt,` =
∑n`

j=1 ζ̂
k
t,j/(

∑
j′ ζ̂

k
t,j′

)ut,j and

ûk
t,` = MLP`(v̂

k
t,`) respectively. To consider the hierarchi-

cal structure information of the encoder, we concatenate the
output of every sub-decoder Dk

l to construct the output of
Dk as [ûk

t,1 ⊕ ...⊕ ûk
t,m−1].

Policy Networks
The role of policy networks is to estimate the decision vec-
tor αt,ij (or βk

t,j), which is further fed into the routers to
make the binary connection decisions. The form of policy
networks is flexible. We opt to use MLP as the policy net-
work for the encoder, which is defined asαt,ij = Nj(ut,i) =

MLP (ut,i). Note that MT-RMN is used to be incorporated
in an existing multi-task recurrent model. There are two types
of multi-task recurrent models in general and they have dif-
ferent ways to incorporate MT-RMN. Thus, we propose two
types of policy networks for the decoders. First, when the
multi-task model itself generates task-specific representation
hk
t for task k, the policy networks are defined as

βk
t,j = N̂ k(ut,j) =MLP (ut,j ⊕Wkh

k
t ), (6)

where Wk is the transformation matrix for task k. Second,
when the multi-task model does not generate task-specific
representations, the policy networks are defined as

βk
t,j = N̂ k(ut,j) =MLP (ut,j). (7)

The policy networks are jointly trained with other parts of
MT-RMN. Their simple architecture makes the estimation
of the decision vector fast and efficient, which is similar to
the design of the policy network in (Guo et al. 2019) and the
design of decision-learner in (Ahmed and Torresani 2019).

Straight-Through Router
Given the output, α (or β), of a policy network, a router
is applied to learn the decision policy which estimates a
binary decision value ζ ∈ {0, 1}. Conceptually, the policy
P can be seen as a binarization function of the decision
scores α={α0, α1} and each value in the pair of the binary
outcomes is the complement of the other. A simple way to
implement the binarization function is to select the position
with maximum value of {α0, α1}, however, this approach
is non-differentiable. There are several ways that allow us
to propagate gradients through the discrete nodes (Bengio,
Léonard, and Courville 2013). In this work, we adopt the
Gumbel-Softmax sampling approach (Jang, Gu, and Poole
2017; Maddison, Mnih, and Teh 2017).

We use Gumbel-Max trick (Maddison, Mnih, and Teh
2017). Specifically, we have two classes (disconnect and
connect). {α0, α1} represent the log probabilities {log(p0),
log(p1)} of the two classes. Thus, we can draw samples from
a Bernoulli distribution parameterized by class probabilities
{p0, p1} in the following way: we first draw i.i.d samples {g0,
g1} from a Gumbel distribution, i.e., g = − log(− log(x)) ∼
Gumbel, where x ∼ Uniform(0, 1). Then produce the dis-
crete sample by adding g to introduce stochasticity:

ζ = argmax
i

[αi + gi], i ∈ {0, 1}. (8)

The argmax operation is non-differentiable, but we can use
the softmax as a continuous differentiable approximation to
it (Eq. (9)). τ is the temperature to control the discreteness.
Thus, we use the argmax to make the binary connection de-
cision on the forward pass, while approximate it with softmax
on the backward pass, which is called the straight-through
estimator (Jang, Gu, and Poole 2017).

µi = exp ((αi + gi)/τ)/(

1∑
î=0

exp ((αî + gî)/τ)), i ∈ {0, 1}

(9)



Sparsity Constrains
We add the sparsity constraint on the connection decision
values ζt,ij . We want the proposed module to avoid con-
necting every pair of sub-networks in the encoder, which
can be viewed as the coarse-grained neural network pruning
(Frankle and Carbin 2019) and benefits the specialization
of sub-networks (Goyal et al. 2019). We also add the spar-
sity constraint on the connection decision values ζ̂kt,i, which
helps the task-specific decoders avoid focusing on every sub-
network of the encoder.

Inspired by (Ke, Zolna et al. 2018), we add two penalty
terms λ1R1(ζ) and λ2R2(ζ̂). They represent the penalties
for connecting sub-networks in the encoder and the penalty
for connections between the decoders and these sub-networks.
Their definitions are

λ1R1(ζ) = λ1ReLU((
∑

ζt,ij)− γ1C1), (10)

λ2R2(ζ̂) = λ2ReLU((
∑

ζ̂kt,i)− γ2C2), (11)

λ and γ are hyper-parameters. C1 is the number of all possi-
ble connections between sub-networks in the encoder and C2

is the number of all possible connections between the sub-
networks and sub-decoders. γ represents the proportion of
connections that are without being penalized. Intuitively, each
connection above the threshold γ1C1 or γ2C2 is penalized.
Complexity Analysis. MT-RMN is local in time. Its com-
plexity per time step is proportional to the number of param-
eters. MT-RMN includes the encoder, decoders and policy
networks, and they contain (ns+cr), K(m-1)d, (K+n)p pa-
rameters respectively, where n, s, c, r, K, m, d, p are #sub-
encoders, size of a sub-encoder, #cells, size of a cell, #tasks,
#layers of a encoder, size of a sub-decoder, size of a policy
network respectively. Thus, the complexity of MT-RMN is
O(ns+cr+Kms).

Related Work
Multi-Task Learning. A number of MTL approaches (Lu-
ong et al. 2016; Subramanian et al. 2018) learned a shared
low-level representation that is followed by unshared de-
coders to extract task-specific representations. However, the
typical MTL methods might degenerate a lot when tasks
are less related (Ruder 2017; Zhang and Yang 2017; Ma
et al. 2019). Several approaches have been proposed to ad-
dress this challenge. (Misra et al. 2016; Ruder et al. 2019)
adopted trainable parameters to control the communications
between different task-specific layers to share knowledge
between tasks. Some used the routing methods to achieve
flexible parameter sharing (Rosenbaum, Klinger, and Riemer
2018; Ma et al. 2018, 2019). However, the routing learned
by (Ma et al. 2018, 2019) was applied to all tasks, instead
of task-dependent. (Rosenbaum, Klinger, and Riemer 2018)
employed the multi-agent reinforcement learning approach
to jointly learn the routing and function blocks, but it did not
focus on recurrent models. (Chen et al. 2018; Liu et al. 2019;
Gupta, Chakraborty, and Chakrabarti 2019) applied MTL to
sequence learning, however, these models are limited because
they used a pre-defined structure to learn task relatedness.
(Cases, Rosenbaum et al. 2019; Rosenbaum et al. 2019a) are
closely related to ours. They extended (Rosenbaum, Klinger,

and Riemer 2018) to natural language understanding. Our
model differs from them in two crucial ways. First, our model
considers layers of function modules instead of the recursive
application of modules. The promise is that we can assemble
the modules more flexibly to account for more complex task
relationships, such as the hierarchical relationship (Huang,
Nair et al. 2019; Lin et al. 2015). Second, our routing mech-
anism is more flexible, allowing multiple and dynamic con-
nections between two layers of sub-encoders, which benefits
the model capacity.

Modular Networks. We take inspiration from recent ad-
vances of modular works (Kirsch, Kunze, and Barber 2018;
Pahuja et al. 2019). Modular networks are composed of mod-
ules and each module is a function with its own parameters.
Learning an efficient set of such modules is akin to learn-
ing a set of functional primitives, which are evident in the
natural world and can be combined to solve a given task
(Meyerson and Miikkulainen 2018). The major advantage of
modular networks is the compositional generalization ability,
which has been studied in the context of modeling dynam-
ical systems (Chang et al. 2019; Huang, Nair et al. 2019;
Purushwalkam et al. 2019). Some recent progress has been
made on the generalization of the complex sequence pro-
cessing tasks (Lake and Baroni 2018; Loula, Baroni, and
Lake 2018; Lake 2019). However, these methods are not de-
signed for MTL. In addition, modular networks are clearly
related to routing networks (Haimerl, Savin, and Simoncelli
2019; Ramachandran and Le 2019; Rosenbaum, Klinger, and
Riemer 2018), where each sample selectively activates only
parts of the entire network. Some routing networks based
on conditional computation have been proposed to improve
computational efficiency (Bengio et al. 2015; Ke, Zolna et al.
2018; Guo et al. 2019). Several approaches routed the ex-
amples through a network in an MTL setting (Rosenbaum,
Klinger, and Riemer 2018; Ramachandran and Le 2019).
However, unlike these methods, we consider the recurrent
models. (Cases, Rosenbaum et al. 2019; Rosenbaum et al.
2019a) considered the modular recurrent representation via
routing. The differences between our model and them are
discussed in the above paragraph. More introduction about
modular and routing networks can be found in (Rosenbaum
et al. 2019b).
Neural Architecture Search. Neural architecture search
(NAS) aims to design the neural network architecture for
a given task automatically (Zoph and Le 2017; Real et al.
2019). Our work can be considered as a special case of NAS,
where we search for a dynamical multi-task model archi-
tecture that consists of a set of generalizable sub-networks
over time. We particularly care about the parameter sharing
problem dynamically. Previous NAS methods usually used
an RNN-based controller to generate model architecture and
then trained the target task based on this architecture (Zoph
and Le 2017). Unfortunately, they are typically with high
computation cost. Some efficient NSA methods have been
proposed recently (Pham et al. 2018; Liu, Simonyan, and
Yang 2019) and our module is of a similar spirit in the sense
that the parameters of architecture and model are learned
jointly, which is also shared by (Ma et al. 2019; Maziarz
et al. 2019). However, all these methods focused on static



models, while we focus on the recurrent models that differ
per example and per time step.

Experiments
In our experiments, all the models are trained by
Adam (Kingma and Ba 2014). The reported results were got
by 5 times 5-fold cross validation. To make fair comparisons,
we tuned the baselines as much as we could. We tried differ-
ent parameter settings via grid-search, increased the number
of parameters to be similar and utilized different tricks. The
learning rate was set to 10−3 initially and decreased during
the training. We experimented with the values of k, λ1, λ2,
γ1 , γ2 in the sets {2, 3, 4}, {2−2, 2−1, 20, 21, 22 }, {2−2,
2−1, 20, 21, 22 }, {0.25, 0.5, 0.75, 1}, {0.25, 0.5, 0.75, 1}
respectively. We obtained best results using k=3, λ1=1, λ1=1,
γ1=0.75, γ2=0.75 in general. For the temperature τ used in
the Gumbel-Max trick, we set its value as 100 initially and
divided the value by 2 at each epoch. For all other parame-
ters in the baseline methods, we adopted the default settings
according to their original papers. The experimental results
on the clinic time series dataset and the analysis of different
model architectures are summarized in the appendix1.

Task-Evoked Functional Brain Activity
To test the flexibility and the generalization ability of MT-
RMN in a controlled environment where we know the dy-
namic relationships between tasks, we create the tfMRI tasks
based upon the task-evoked functional MRI dataset2 (task-
fMRI), which is widely used to analyze the relationship
between brain connectivity and human behavior (Barch,
Burgess et al. 2013). Figure 2 shows the visualization of
the task-fMRI data of a participant who performed seven
tasks successively. There are twelve time series grouped into
four groups and each time series corresponds to a high-order
region of human brains. The x-axis represents time and the y-
axis represents the normalized activation degree (see (Barch,
Burgess et al. 2013) for more details). The functional connec-
tivity between regions varies over time, which indicates the
relationships between the sequence processing tasks of brain
regions are dynamic.

A tfMRI task is defined as a multi-class classification task
of time series and we construct four tasks as shown in Figure
2. The brain regions involved in Task-1 and Task-4 are related
to the cognition and sensory systems of humans respectively.
The regions in Task-2 have mixed functions related to both
cognition and sensory abilities. Task-3 is more related to
the attention system. To extract meaningful features, each
time series were further processed to be 28 time steps long
with 10 feature dimensions (see supplementary material for
pre-processing details). Every 4 time steps represent the time
period when the participant conducted a task. The data was
split into train (80%) and test (20%) sets randomly.

Flexibility To evaluate the flexibility, we consider two
groups of tfMRI tasks. Group-1 includes Tasks-1,2,3 and
Group-2 includes Tasks-1,3,4. The relationships between

1Data and codes can be found in the authors’ website.
2https://tinyurl.com/y4hhw8ro

these tasks are dynamic but the tasks of Group-1 are more
related in general compared to the tasks in Group-2. We cre-
ate an MTL model (mtl-RMN) based on our networks. The
network consists of three standard LSTMs that are connected
to MT-RMN at each time step. Each LSTM is used for a
tfMRI task to extract the task-specific hidden representation.
The MT-RMN used here consists of a three-layer encoder and
three task-specific decoders. The first layer of the encoder
includes three LSTM cells and each of other layers contains
three sub-encoders. Each decoder includes two sub-decoders.
We choose this architecture because of its low enough capac-
ity that contributes to the visible competition between tasks
(Ramachandran and Le 2019).

We use five baselines that use different ways to utilize task
relationships. FS-MTL (Caruana 1993) uses a fully shared
neural layer for all tasks along with separate task-specific
output layers. SP-MTL (Liu, Qiu, and Huang 2017) uses the
adversarial training to help the shared neural layer contains
the task-invariant knowledge and uses the orthogonality con-
straint to eliminate knowledge redundancy. DC-MTL (Liu
et al. 2019) has task-specific neural layers for different tasks
and each task shares knowledge between any other directly.
IC-MTL (Liu et al. 2019) differs from DC-MTL that uses an
additional layer to share knowledge indirectly between tasks.
RRNs (Cases, Rosenbaum et al. 2019) recursively chooses
sub-functions from a single set of composable functions via a
router for different input examples. We apply RRNs to route
an LSTM input transformation.

We run these methods on Group-1 and Group-2 in the
MTL setting, where the task weights are set to the same. We
apply the softmax layer to the hidden representation at the last
time step to get the predicted label. The results are reported
in Table 1. It is observed that mtl-RMN achieved the best
performance. When the tasks were more related (Group-1),
all the methods showed high performance. However, the mar-
gin between the performance of mtl-RMN and the baselines
was more clear when tasks were less related (Group-2). Both
DC-MTL and IC-MTL outperformed FS-MTL on Group-
1, but DC-MTL showed a little bit lower performance on
Group-2. This is because the way of sharing knowledge in
DC-MTL is more suitable for the case when tasks are more
related. Compared to other baselines, RRNs showed higher
performance on Group-2, because RRNs can limit task in-
terference better for less related tasks. However, mtl-RMN
outperformed RRNs on both groups, indicating the routing
mechanism of mtl-RMN is more flexible. This might be be-
cause mtl-RMN can not only limit the shared weights for
less related tasks, but also increase the shared ones for more
related tasks via its dynamic/multiple connections between
sub-encoder layers. We also report the loss (averaged over
tasks) of FS-MTL, IC-MTL andmtl-RMN on the two groups
over epochs, which are shown in Figure 3. We see that the
average loss of mtl-RMN behaved in a similar way on the
two groups, while FS-MTL and IC-MTL degenerated clearly
when tasks were less related. This might be because there
was task interference during training when tasks were less
related, which resulted in negative transfer between tasks.
mtl-RMN is more flexible and can reduce negative trans-
fer more effectively. All the observations demonstrate that



Task-1 Task-2 Task-3 Task-4

Figure 2: The task-fMRI data of twelve high-order brain regions of a participant. The regions are grouped into four groups based
on their functionalities. Each group is used to construct a multi-class classification task of time series. The participant was asked
to perform seven tasks successively (Barch, Burgess et al. 2013).

Table 1: Results (accuracy %) on two groups of tfMRI tasks.

Groups Group-1 Group-2
Task-1 Task-2 Task-3 Task-1 Task-3 Task-4

FS-MTL 89.7±0.6 93.5±1.1 89.1±0.3 73.2±0.5 81.2±0.6 81.3±1.4
SP-MTL 88.7±1.4 94.0±1.9 90.7±2.3 73.7±1.5 78.0±1.5 81.2±2.1
DC-MTL 89.2±0.6 95.6±1.2 90.8±1.0 74.5±0.6 80.0±0.7 80.8±1.3
IC-MTL 89.6±0.4 95.7±1.1 91.3±1.7 74.5±0.4 81.4±1.1 81.8±2.6
RRNs 88.9±3.4 95.4±2.2 90.5±2.8 75.4±2.2 83.2±3.0 82.6±3.8
mtl-RMN 90.8±2.1 96.7±1.6 92.9±2.4 76.1±1.8 84.4±2.4 83.5±2.2

(a) Tasks are more related. (b) Tasks are less related.

Figure 3: Loss comparison when tasks are more related (left)
and less related (right).

MT-RMN is able to learn task relationships flexibly.

Generalization Ability To evaluate the generalization abil-
ity, we create four novel test-time scenarios, A, B, C, D,
based on the four tfMRI tasks, as shown in the left part of
Table 2. Each case consists of three training tasks and a test
task that is not included in the training task set. We hope to
test if MT-RMN could discover a set of generalizable sub-
networks to capture the sub-task patterns, which is critical
for the compositional skills. We create a new model called
RMNtr. Specifically, we first train mtl-RMN on the training
tasks. After training, we fix the parameters of the encoder
and its policy networks. Then, we connect the fixed encoder
(including its policy networks) with a new LSTM and a new
decoder with a policy network. The data of test task is fed
into both the new LSTM and the fixed encoder. The output
of the new decoder is concatenated with the hidden represen-
tation of the new LSTM as the final representation which is
further fed into a softmax layer.

We use four baselines: LSTM, RMNun, RRNs and IC-
MTL. We run LSTM on the test task directly. RMNun is a
model where an untrained encoder of MT-RMN is connected
with an LSTM and a decoder. We run RMNun on the test task
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Figure 4: (Left) The routing patterns of examples of each task.
The value represents the proportion of examples which acti-
vate the corresponding sub-network. (Right) The proportion
of tasks assigned to each sub-network. Different colors distin-
guish different tasks and A-F represent the six sub-networks.

directly. For IC-MTL, we first train it on training tasks. After
training, the shared LSTM in IC-MTL is fixed. Then we con-
nect it with a new LSTM. The results are reported in the right
part of Table 2. RMNtr outperformed LSTM, which indicates
that MT-RMN can help the base model (LSTM) handle the
unseen tasks. RMNtr outperformed RMNun, which indicates
that the regularities across tasks help improve the perfor-
mance of a single task. Both RMNtr and RRNs outperformed
IC-MTL, indicating the modularity benefits generalization.
Task-2 performed similarly in Tables 1-2, because Task-2
might be an easy task and the task relatedness does not in-
fluence its performance much. Tasks-1,3 performed worse
in Table 2 than that in Group-1 of Table 1 but better than
that in Group-2, because training tasks are more/less related
in Group-1/2 than the ones in both scenarios B and D. All
these observations demonstrate that MT-RMN can improve
the systematic compositional skills of the base models and
further help them generalize well for unseen tasks.



Table 2: Four test-time scenarios to evaluate generalization ability and the results (accuracy%).

Scenario settings Results of different methods
Scenarios Training tasks Test task LSTM RMNun RRNs IC-MTL RMNtr

A Task-1 Task-2 Task-3 Task-4 82.6±1.0 82.9±1.2 83.0±2.7 81.2±1.7 83.3±2.3
B Task-1 Task-2 Task-4 Task-3 82.3±0.6 84.5±1.5 84.8±2.5 82.7±1.3 85.6±1.7
C Task-1 Task-3 Task-4 Task-2 93.7±0.6 95.3±0.8 95.6±1.7 95.5±0.7 97.0±1.8
D Task-2 Task-3 Task-4 Task-1 71.7±1.4 73.1±1.7 78.4±4.0 77.3±2.1 79.3±2.6

Table 3: Results of POS tagging.

Methods Original DC-MTL IC-MTL rrn-RMN MT-RMN
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

NS-MTL 44.3±0.7 38.9±1.6 51.5±0.5 49.4±0.9 51.4±1.4 49.7±0.8 53.5±1.9 52.7±0.8 55.2±1.2 53.4±2.4
Cross-stitch. 46.0±1.9 12.7±0.8 48.5±0.9 16.1±1.3 47.7±1.7 14.3±0.7 52.1±1.0 19.5±0.6 51.7±1.9 21.4±3.2
Sluice 58.7±0.7 55.4±2.1 59.2±1.7 56.0±2.3 59.5±1.9 56.2±0.7 60.4±1.2 56.6±0.7 61.5±1.7 57.2±1.8
GIRNet 62.8±0.6 46.6±0.4 62.5±1.1 57.4±0.5 63.1±1.5 58.6±1.3 63.6±1.7 61.3±1.5 64.5±2.1 62.6±2.4

POS Tagging of Code-Switched Sentences

To directly evaluate the ability of MT-RMN to improve the
performance of multi-task models on sequence processing
tasks, we test MT-RMN on the multi-task setup of part-of-
speech (POS) tagging (Santos and Zadrozny 2014) of code-
switched sentences, where the words are from two languages
and the goal is to label the sequences from code-switched
text (Gonen and Goldberg 2019). Code switching is com-
mon, especially in social media where the participants are
multilingual users (Vyas et al. 2014). Given the input sen-
tence denoted by (w1, w2, w3, ...), where words are from
languages A, B, i.e., wi ∈ DA ∪DB , the goal is to predict a
label sequence (y1, y2, y3, ...). We pre-process the data and
create our setup exactly following (Gupta, Chakraborty, and
Chakrabarti 2019). Specifically, we use the Hindi-English
code-switched dataset provided in (Patra, Das, and Das 2018)
for the primary task. The dataset has 19 POS tags and con-
tains 2102 and 528 instances for the training and test sets
respectively. We use the Hindi POS tagging dataset pro-
vided in (Sachdeva et al. 2014) and the English one provided
in (Sang and Buchholz 2000) for the auxiliary tasks of Hindi
and English respectively. The Hindi dataset includes 14084
instances with 25 POS tags and the English dataset includes
8936 instances with 45 POS tags.

We compare MT-RMN to three baselines, including DC-
MTL, IC-MTL and a variant called rrn-RMN, where we re-
place the layers of sub-encoders with one set of sub-encoders
in the recursive layout. We further incorporate these methods
into five MTL approaches to test their ability to improve these
MTL approaches. NS-MTL has an independent LSTM layer
for each task and all the tasks are jointly optimized. Cross-
stitch (Misra et al. 2016) has task-specific layers for different
tasks. It uses parameters to control the amount of information
shared between layers. Sluice (Ruder et al. 2019) splits the
channels of layers and controls the information sharing by
parameters. The outputs of intermediate layers are fed to the
output layers. GIRNet (Gupta, Chakraborty, and Chakrabarti
2019) contains two LSTMs that are trained over auxiliary
instances. The state sequences of the two LSTMs are merged
into a composite state sequence for the primary task.
Results. We show the results in Table 3. MT-RMN improved

these base models most compared to other baselines. NS-
MTL performed much better when combined with any of
the four methods, indicating the necessity of exploiting regu-
larities across tasks to improve task performance. MT-RMN
and rrn-RMN helped the base models perform better com-
pared to others, which verifies the better ability of modular
networks with routing to exploit regularities. Both Sluice
and GIRNet outperformed Cross-stitch because they share
knowledge at the granularity of word. All the observations
verify the advantage of MT-RMN in improving the multi-task
models on sequence processing tasks.
Sub-Encoder Specialization. To verify that the sub-
encoders can capture primitives for different tasks, we vi-
sualize the routing patterns learned by MT-RMN. We use
a three-layer encoder that has 3 cells in the 1st layer and 3
sub-encoders in each of others. We incorporate this MT-RMN
into GIRNet and test it on the POS tagging task. After train-
ing, examples from the test set are passed through MT-RMN.
The results of the first 6 time steps are shown in Figure 4.
The routing pattern of each time step is represented by a
3×2 grid, each of which corresponds to a sub-encoder. We
aggregate the connection choices (between sub-encoders and
sub-decoders) for every sample and concatenate the grids of
different time steps. Figure 4 (left) shows that the routing pat-
terns varied over time and the examples from different tasks
tended to be routed through different sub-encoders. Figure
4 (right) shows how different sub-encoders handle different
task distributions. All the observations demonstrate that sub-
encoders focus on different tasks and can be assembled for
different tasks.

Conclusion
We propose MT-RMN, the multi-task recurrent modular net-
works to improve the performance of multi-task recurrent
models. MT-RMN includes a shared encoder and a set of
task-specific decoders. It modularizes the encoder into lay-
ers of sub-encoders for flexibility and dynamically learns
the connections between the sub-networks and the decoders
via decision policies. MT-RMN recurrently operates over
time and is easy to be incorporated in any multi-task recur-
rent models. Experiments demonstrate the effectiveness of
MT-RMN.
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Statement of Ethical Impact
Our proposed networks are general and can be easily incorpo-
rated in any recurrent model to improve its performance via
exploiting regularities across tasks. There are several impacts
of using our networks. First, our networks enable models
to generalize to unseen categories, which are common in
real-world, via dynamically routing a set of sub-encoders.
Second, our networks help models save computing resources
via reusing the well-trained and generalizable sub-encoders
for different tasks. Third, our networks help users inspect how
the model operates to understand the dynamic relationships
between tasks, such as the analysis of brain connectivity and
human behavior based on the fMRI dataset. However, our
networks also put deep recurrent models at a high risk of
being attacked. Our networks seek a set of sub-networks that
are assembled in different ways for different tasks. Disturbing
these sub-networks leads to significant changes on the task
performance. Besides, increasing the interpretability of deep
recurrent models might bring about automation bias, such as
an unwarranted trust on the models.
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