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Abstract

The problem of learning and forecasting underlying trends
in time series data arises in a variety of applications, such
as traffic management, energy optimization, etc. In literature,
a trend in time series is characterized by the slope and dura-
tion, and its prediction is then to forecast the two values of the
subsequent trend given historical data of the time series. For
this problem, existing approaches mainly deal with the case
in univariate time series. However, in many real-world appli-
cations, there are multiple variables at play, and handling all
of them at the same time is crucial for an accurate predic-
tion. A natural way is to employ multi-task learning (MTL)
techniques in which the trend learning of each time series is
treated as a task. The key point of MTL is to learn task re-
latedness to achieve better parameter sharing, which however
is challenging in trend prediction task. First, effectively mod-
eling the complex temporal patterns in different tasks is hard
as the temporal and spatial dimensions are entangled. Second,
the relatedness among tasks may change over time. In this pa-
per, we propose a neural network, DeepTrends, for multivari-
ate time series trend prediction. The core module of Deep-
Trends is a tensorized LSTM with adaptive shared memory
(TLASM). TLASM employs the tensorized LSTM to model
the temporal patterns of long-term trend sequences in an MTL
setting. With an adaptive shared memory, TLASM is able
to learn the relatedness among tasks adaptively, based upon
which it can dynamically vary degrees of parameter sharing
among tasks. To further consider short-term patterns, Deep-
Trends utilizes a multi-task 1dCNN to learn the local time
series features, and employs a task-specific sub-network to
learn a mixture of long-term and short-term patterns for trend
prediction. Extensive experiments on real datasets demon-
strate the effectiveness of the proposed model.

Introduction
A large amount of time series data has been generated from
various domains, such as traffic management (Lai et al.
2018), energy optimization (Rangapuram et al. 2018) and
algorithmic trading (Wang et al. 2019a). Great efforts had
previously been made for prediction on specific data points,
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Figure 1: The overview of the proposed deep architecture for
learning trends in multivariate time series.

which however could deliver very little information about
the semantics and dynamics of the underlying process gen-
erating the time series (Lin, Guo, and Aberer 2017). In many
applications, it is arguably even more crucial to learn and
forecast the evolving trend which measures the intermediate
behaviour, i.e., upward or downward pattern of time series.
For example, the trend prediction has been popularly used
in capacity planning, energy optimization, etc. Besides, in
some applications, such as algorithmic trading, it is more
achievable to predict the trend of stock price rather than fore-
cast the market absolute values (Xu and Cohen 2018).

In literature, there have been few efforts to learn and pre-
dict trends in time series data. In (Lin, Guo, and Aberer
2017), Lin et al. proposed a hybrid neural network to pre-
dict trend in univariate time series. In their work, a trend in
time series is characterized by the slope and duration of the
up/down movement of time series. The task is then to pre-
dict the slope and duration of the next coming trend given
the historical data of time series over a period of time. Note
that the existing approaches on time series prediction cannot
be directly applied to the trend prediction as the task needs
to predict both the duration and the slope of the subsequent
trend, that are entangled.

However, in many real-world applications, there are mul-
tiple variables at play, and handling all of them at the same
time is crucial for an accurate prediction, because the trend



pattern of one time series may influence others. For this
problem, a natural way is to take advantage of the multi-
task learning (MTL) (Caruana 1997). In the MTL setting,
the trend learning of each time series is considered as a task
and different tasks are performed jointly. MTL can help im-
proving the performance of tasks when they are related, and
it also saves the computation cost by sharing model architec-
tures (parameters) between related tasks. However, the MTL
model may suffer significant degeneration in performance
when tasks are less related to each other (Dong and De Melo
2018b; Ma, Li, and Hong 2019). Fig. 2(a) shows a basic
MTL model for modeling the temporal patters of two time
series, where each time series has its own parameters to gen-
erate hidden representations and the hidden representations
of different time series influence each other by additional
shared parameters. Compared to models without parameter-
sharing, it introduces inductive bias into the shared architec-
ture (Liu, Qiu, and Huang 2016). When tasks are unrelated,
the inductive biases in different tasks will have conflicts and
hurt task performance. To alleviate this problem, Liu et al.
proposed a memory enhanced model that decouples the hid-
den representations into the task specific patterns and the
shared ones (Liu, Qiu, and Huang 2016). The architecture
of it is shown in Fig. 2(b), in which an external memory is
designed to share information among different tasks. How-
ever, the shared memory can not model task relatedness for
better parameter-sharing. Another challenge comes from the
temporal dynamics in different tasks. In many cases, the re-
latedness among tasks may change over time.

To address the above challenges, we propose a deep ar-
chitecture, DeepTrends, for learning trends in multivariate
time series as shown in Fig. 1. DeepTrends jointly learns
both local and global contextual features for predicting the
trend of time series. Its core module is a tensorized LSTM
with adaptive shared memory (TLASM) (Fig. 3) to learn the
sequential dependency of historical trends, which carries the
information about long-term trend evolving. To further con-
sider short-term dependency, DeepTrends utilizes a multi-
task 1dCNN to learn the features of local raw time series,
which delivers the information about the abrupt changing
behavior of the trend evolution.

Specifically, TLASM leverages the tensorized LSTM to
model the complex temporal patterns in different tasks,
based upon which, an adaptive shared memory is designed
to learn the task relatedness and dynamically integrate the
shared information from related tasks into the representa-
tion of each individual task. The adaptive shared memory
consists of multiple layers of sub-networks. TLASM learns
the sub-network connections between different layers for in-
formation routing. In this way, one learning task can share
more parameters with more related ones by selecting a sim-
ilar sub-network. Each task is associated with one task spe-
cific unit at each time step for dynamical information rout-
ing. The idea of sub-network routing has been used in recent
work (Misra et al. 2016; Ma et al. 2018; Ma, Li, and Hong
2019). However, none of them is designed for the sequen-
tial model. Moreover, time series data often involves a mix-
ture of long-term and short-term patterns (Lai et al. 2018).
In DeepTrends, TLASM is employed to model the long-term

NEC Group Internal Use Only

x1(1)

h1(1)

x2(1)

h2(1)

x3(1)

h3(1)

x4(1)

h4(1)

h1(2) h2(2) h3(2) h4(2)

x1(2) x2(2) x3(2) x4(2)

TS-1

TS-2

(a) Basic MTL

NEC Group Internal Use Only

x1(1)

h1(1)

x2(1)

h2(1)

x3(1)

h3(1)

x4(1)

h4(1)

h1(2) h2(2) h3(2) h4(2)

x1(2) x2(2) x3(2) x4(2)

TS-1

TS-2

h2(s)h1(s) h3(s) h4(s)

(b) Enhanced MTL

Figure 2: Two architectures for modeling the temporal pat-
terns of two time series with multi-task learning.
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Figure 3: The architecture of the proposed TLASM for mod-
eling the temporal patterns of two time series.

dependency within the sequence of historical trends. Since
CNN is good at extracting patterns of local salience by ap-
plying a local connectivity between neurons (Lai et al. 2018;
Lan et al. 2019), DeepTrends further employs a multi-task
1dCNN to extract salient features from local raw time se-
ries data, so as to model the short-term dependency be-
tween local time series data and the subsequent trend. A
task-specific sub-network is then designed to integrate the
long- and short-term dependency. To summarize, the major
contributions are as follows.
• We propose DeepTrends, a multi-task deep learning

model for learning trends in multivariate time series,
which considers both long- and short-term dependency.

• We design TLASM, which is the first neural network ca-
pable to jointly model the temporal patterns of multivari-
ate time series and achieve flexible parameter sharing.

• We perform extensive experiments on real datasets and
the results demonstrate the effectiveness of DeepTrends.

The Problem
We extend the problem setting in (Lin, Guo, and Aberer
2017) into a multivariate one. n time series is denoted
by X = (x1, · · · , xn)> = (x1, · · · , x
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slope of the k-th trend in the i-th time series respectively. li
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values. Trends of X are time ordered and non-overlapping.
The durations of all the trends in each time series addressP
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= T . Details of how to extract trends in raw time se-
ries are discussed in the experiment section.

The local time series data delivers the information about
the abrupt changing behavior of the trend evolution. The lo-
cal data w.r.t each historical trend is defined as the time se-
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Data instances are built by combining the historical trend
sequence, local raw time series data and the subsequent
trend. All data instances are split into training set (80%),
validation set (10%) and test set (10%). To generate trends,
we adopt the l1 trend filtering for multivariate time series
(Kim et al. 2009). The objective function is
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where x
t

2 Rn is the time series data at time step t and
ˆx
t

is the estimate. Using similar idea in the group Lasso,
it couples together changes in the slopes of individual en-
tries at the same time index, so the trend component found
tends to show simultaneous trend changes. Note that even
the trends in multivariate time series are asynchronous, the
trend will be split into smaller pieces and maintains the pre-
dictive power (Kim et al. 2009). In the objective function,
µ is a parameter to control the number of generated trends.
The smaller µ is, the more fine-grained the trends are. The
specific value of µ depends on the user’s need.

The TLASM Network
We first introduce the basic LSTM, followed by how to ex-
tend it into the tensorized one with adaptive shared memory.

The Basic LSTM Network
The LSTM network is a powerful approach to learn the long-
term dependency of sequential data (Xu et al. 2019b; 2019a).
The calculation process of the LSTM unit (applied to each
time step) is described in Eqs. (2)-(4). Given a sequence of
input data x1, x2, ... 2 Rn, a memory cell c

t

2 Rd and a
hidden state h
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2 Rd are calculated for each input data by
the following equations.
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2 Rd are called forget, input, output gates respectively
and their values are in the range of [0,1]. These gates con-
trol how much information to keep/throw away. �(·), � and
� represent element-wise sigmoid function, concatenation
operator and element-wise multiplication respectively. The
LSTM unit can be rewritten as follows, where ✓ represents
all the parameters.
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, and feed this concate-
nation in each trend of all time series into LSTM to learn
the long-term trend dependency. After feeding the trend se-
quence T into LSTM, the hidden state h

t

at the last time step
is used as the overall representation of the trend sequences.

Individual time series typically presents different dynam-
ics. However, as the basic LSTM blindly blends the informa-
tion of all time series into the hidden state h

t

, it is intractable
to further learn the time series-specific representations. Be-
sides, the relatedness among the trend learning tasks of dif-
ferent time series can not be modeled by the hidden state
mixing multivariate data, thus potentially hurting the trend
learning task performance.

Tensorizing Hidden States
We tensorize the hidden states to learn the time series-
specific representation, such that the hidden representation
of each time series can be learned exclusively based on the
data from that time series. The idea of tensorizing hidden
states has been used in some recent work (He et al. 2017;
Guo, Lin, and Antulov-Fantulin 2019) and has shown its ad-
vantages for sequential tasks.

The intuition behind tensorizing hidden states is that we
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From the view of MTL, tensorizing hidden states trans-
forms the hidden state update of multivariate time series into
multiple independent tasks, each of which corresponds to a
time series. Thus, it helps learning time series-specific rep-
resentations. However, it can not model the task relatedness.

Adaptive Shared Memory
We propose an adaptive shared memory to model task relat-
edness. Our goal is to make more related tasks share more
model architecture/parameters and less related ones share
less. Similar idea has been used in recent work (Misra et
al. 2016; Ma et al. 2018; Ma, Li, and Hong 2019), however,
none of them focuses on the recurrent neural networks for
sequence modeling.

Fig. 3 illustrates the architecture of TLASM, in which the
red cells are task-specific units and the middle parts are the
adaptive shared memory that consists of multiple layers of
parallel sub-networks. In the adaptive shared memory mod-
ule, the first layer consists of multiple independent LSTMs
(blue blocks), followed by a bunch of sub-networks (yel-
low rectangles) consist of multiple multilayer perceptrons
(MLPs). The last layer (green blocks) is the task-specific
MLPs to collect information for specific task. The connec-
tion between the sub-networks is a weighted average with
attention mechanism. All the independent LSTMs and sub-
networks are shared by all prediction tasks. The adaptive
shared memory learns the connections between the sub-
networks to encode the architecture space, which generates
different sub-network routings. It achieves a flexible param-
eter sharing by learning to select a similar sub-network rout-
ing for related tasks. Besides, because it includes LSTMs as
the first layer to read information from time series at each
time step, the adaptive shared memory is able to model the
task relatedness that may change over time.

The intuition behind multiple LSTMs included in the
adaptive shared memory is that there are different shared
hidden feature spaces for the tasks and each LSTM corre-
sponds to one of them. Suppose the 1st layer includes p

standard LSTMs and the 2nd layer includes q MLPs. After
feeding all the trend sequence data into these LSTMs, the
outputs at time step t are
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For the sub-network routing between the 1st layer and 2nd
one, we use a weighted average of the 1st layer’s outputs:
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ber of attentions used between two layers equals to the num-
ber of sub-networks in the latter layer. Similarly, we design
the sub-network routing between other layers. The attentions
between different layers are different. As the number of sub-
networks in the final layer equals to the number of tasks, i.e.,
the number of time series, we can get the output of the last
layer as R
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With the tensorized hidden states mechanism and the
adaptive shared memory, we propose TLASM. The intuition
behind TLASM is that the hidden state of time series is influ-
enced by both the information from that time series and the
information from related ones. Specifically, each time series
has its own memory ci

t

2Rd0 storing the time series-specific
information and the adaptive shared memory ri

t

2 Rdr stor-
ing the information of related time series. When generating
the hidden state of the i-th time series hi
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information from both the two memories ri
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and ci
t

.
The calculation process of the TLASM unit is described

in Eqs. (13)-(16). As a standard LSTM neural network,
TLASM has the forget gate F
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and the memory cell C
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in the update process. Given the
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is the updated
state matrix. F
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, I
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, O
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2 Rn⇥d are the gates in the form of
matrix. G

t

2 Rn⇥d is a fusion gate. It selects a part of the
information read from the shared memory, which is merged
with the time series-specific memory into a new one for each
task (Eq. (16)). Similar idea of memory fusion strategy has
been used in (Liu, Qiu, and Huang 2016).

Similar to the case of tensorizing hidden states (Eq. (6)),
the tensor-dot operations ensure the data used to generate
the gates (Eq. (13)) and the memory cell matrix (Eq. (14)) of
each time series are exclusively from the corresponding time
series. TLASM can also be considered as a set of parallel
LSTMs, each of which processes one time series and then
merges via the adaptive shared memory.

Deep Architecture with TLASM for Learning
Trends in Multivariate Time Series

The overview of the proposed deep architecture is shown in
Fig. 1. The sequences of historical trends of all time series



are fed into TLASM to learn the long-term trend evolving.
A multi-task 1dCNN is applied to the local raw data of each
time series to extract local features. The outputs of TLASM
and 1dCNN are further fed into a task-specific subnetwork
to get the final trend prediction of that time series.

TLASM for Learning Long-Term Trend Evolving The
trend sequences of all time series, i.e., T = {
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Multi-task 1dCNN for Learning Local Features To ex-
tract the features of local time series data, DeepTrends em-
ploys a multi-task 1dCNN module which enjoys the clas-
sic architecture of the shared-bottom MTL. In the module,
a low-level subnetwork is shared by all time series and each
time series has its own subnetwork built on top of the shared
one. All these subnetworks consist of multiple stacked lay-
ers of 1d convolutional, activation and pooling operations.
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Task-Specific Sub-networks Motivated by the success of
multi-task learning (Ma, Li, and Hong 2019; Liu, Johns,
and Davison 2019), we design a task-specific sub-network
for the trend learning of each time series. The outputs of
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(T ) and C

i

(L), are
concatenated and fed into the task-specific sub-network. The
output of the sub-network for the i-th time series isD

ˆ

l

i

, ŝ
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), where ' is the leaky ReLU acti-
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are parameters.

Objective Function Given the trend sequences T and the
local data L, the objective function is
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where z

i is the number of trends in the i-th time series and
P

nn

is the penalization term for the parameters to prevent
our model from over-fitting. � is a hyper-parameter.

Experiment
We use three datasets and seven baselines for experiments.

Datasets, Baselines and Experiment Setting
The three public datasets are summarized in Table 1.
• Traffic1: The collection of 48 months hourly data from the Cal-

1http://pems.dot.ca.gov/

Table 1: Description of the datasets
Dataset Traffic Exchange-Rate Solar-Power

µ 10 40 100 2 6 20 400 600 800

# Trends 5187 3755 1499 2312 1508 925 13957 8554 4856

# Time Steps 17544 7588 52560

# Time Series 9 7 9

Table 2: Comparison of baseline methods
Method Models Dependency Parameter Sharing

Long-Term Short-Term Hard Soft Adaptive

CNN ⇥ X ⇥ ⇥ ⇥
LSTM X ⇥ ⇥ ⇥ ⇥
CLSTM X ⇥ ⇥ ⇥ ⇥
TreNet X X ⇥ ⇥ ⇥
LSTM-m X ⇥ X ⇥ ⇥
TreNet-m X X X ⇥ ⇥
ME-LSTM X X ⇥ X ⇥
DTrends-L X X X ⇥ ⇥
DTrends-C X X ⇥ ⇥ X
DeepTrends X X ⇥ ⇥ X

ifornia Department of Transportation. The data describes the
road occupancy rates (between 0 and 1) measured by different
sensors on San Francisco Bay area freeways.

• Exchange-Rate: The collection of the daily exchange rates of
Australia, British, Canada, Switzerland, Japan, New Zealand
and Singapore ranging from 1990 to 2016.

• Solar-Power2: The production records of solar power in 2006.
The records are sampled every 10 minutes from 137 PV plants
in Alabama State. We take the records of nice plants of them.
To conduct a comprehensive comparison, we select three

values of µ for each dataset to generate the trend sequence
with different granularities. The details of the generated
trends are summarized in Table 1.

We compared our model with the seven baseline meth-
ods. The comparison between them is shown in Table 2.
CNN, LSTM, CLSTM and TreNet are originally designed
for univariate data. We apply them to each time series in-
dependently to predict the trends. LSTM-m, TreNet-m and
ME-LSTM adopt multi-task learning and predict the trends
of different time series jointly.
• CNN: The model applies 1dCNN to the local raw data of each

time series independently to predict trends.
• LSTM-u: The model applies LSTM to the trend sequence of

each time series independently to predict trends.
• CLSTM: The model feeds the features learnt by CNN over the

raw time series into LSTM to predict trends (Ballas et al. 2016).
• TreNet: The model is designed for univariate time series. It uses

LSTM and 1dCNN to capture the dependency in the trend se-
quence and the local raw data respectively to predict trends (Lin,
Guo, and Aberer 2017).

• LSTM-m: The model feeds the trend sequences of all time series
into a LSTM to predict the trends jointly.

• TreNet-m: The model extends TreNet to model multivariate
data. LSTM and 1dCNN are applied to the trend sequences and
the local raw data of all time series respectively to predict the
trends of different time series jointly.

• ME-LSTM: The model augments LSTM with an external mem-
ory to capture the long term dependency (Liu, Qiu, and Huang
2016) and employs multi-task 1dCNN to capture local features.
2https://www.nrel.gov/grid/solar-power-data.html



To evaluate the effectiveness of different components of
DeepTrends, we do ablation study on its variants. DTrends-
L is the variant that replaces TLASM with the basic LSTM.
DTrends-C is the variant that replaces the multi-task 1dCNN
with a basic 1dCNN to extract local features. We evaluate
the performance in terms of root mean square error (RMSE)
and root relative squared error (RRSE) (Lai et al. 2018).
Lower RMSE/RRSE indicates higher performance.

In our experiments, all the models are trained by Adam al-
gorithm (Kingma and Ba 2014). The adaptive shared mem-
ory consists of 4 layers of sub-networks. The 1st one con-
sists of 4 LSTMs. The number of MLPs in the last layer
equals to the number of time series. Other layers consist of
4 MLPs. All MLPs are 2-layer fully-connected networks.
In multi-task 1dCNN, both the shared 1dCNN and the task-
specific one have two stacked convolutional layers, and they
have 64 filters of size 2 and 4, 32 filters of size 2 and 4 re-
spectively. The task-specific sub-networks are 2-layer fully-
connected networks. The window size T , local data size w

and � are grid-searched from {8, 16, 32, 64}, {4, 8, 16, 32}
and {0, 10�5,10�4,10�3,10�2} respectively. d0 d0, d

↵

, d
r

and the hidden size of MLP layers are grid-searched from
{8, 16, 32, 64}. The learning rates of all models are random-
searched within [0.00005, 0.1] in log-scale. The code of
DeepTrends is publicly available3

Prediction Results
Table 3 shows the prediction performances. It is observed
that DeepTrends achieves the best performance on both the
duration and the slope predictions. Compared to CNN and
LSTM, TreNet shows better performance. This is because
TreNet can model both the long- and short-term dependen-
cies in the trend of univariate time series. TreNet outper-
forms CLSTM, indicating the validity of feeding the ex-
tracted trends into LSTM to capture the sequential depen-
dency of historical trends. LSTM-m outperforms LSTM on
the Solar-Power dataset but not on the Traffic dataset. This
is because different time series are related in Solar-Power,
which benefits the MTL used in LSTM-m, and the low relat-
edness between time series in Traffic makes LSTM-m suffer
degeneration in performance. DeepTrends adopts an adap-
tive shared memory that can model the relatedness flexibly,
which helps DeepTrends outperform LSTM and LSTM-m
on both datasets. Similar cases can be observed between
TreNet and TreNet-m. ME-LSTM outperforms LSTM, in-
dicating the advantage of enhanced memory when mod-
eling the temporal patterns of multiple time series. Deep-
Trends outperforms ME-LSTM, which indicates the advan-
tage of adaptive shared memory over enhanced memory. By
comparing DeepTrends with DTrends-L and DTrends-C, we
see the benefits of tensorizing hidden states and multi-task
1dCNN (compared to basic 1dCNN) to extract local features
respectively.

Visualization of Trend Slope Prediction
To gain further insight about the long- and short-term depen-
dencies in the trend learning, we visualize the trend slope

3https://github.com/DerronXu/DeepTrends/tree/master

(a) Local data (b) Future data NEC Group Internal Use Only(c) True slope v.s. Pre-
dicted slope

Figure 4: Visualization of the trend slope prediction by
DeepTrends on the Traffic dataset.

(a) Varying T (b) Varying w (c) Varying �

Figure 5: Parameter sensitivity study of DeepTrends.

prediction by DeepTrends on the Traffic dataset as shown
in Fig. 4. It is observed that, for the T6 time series, the lo-
cal data shows a downward trend overall. In the subsequent
future time period, the time series value of T6 decreases as
shown in Fig. 4(b). This indicates the validity of local data
used for trend prediction. DeepTrends predicts the trend di-
rection of T6 successfully (Fig. 4(c)). For T7, its local data
shows an upward trend, however, its future data shows a
downward trend as shown in Fig. 4(b). This is because the
long-term dependency in trend sequence also influences the
subsequent trend. As shown in Fig. 4(c), DeepTrends pre-
dicts the trend slope of T7 accurately, which verifies the
ability of the TLASM network to learn the long-term trend
evolving. For T3, there are two sub-trends (one downward
and one upward) in its local data. For its future data, T3
shows a slightly downward trend. This is because the trend
of T3 is influenced by both long- and short-term dependen-
cies, which is also captured by DeepTrends (Fig. 4(c)).

Parameter Sensitivity

We study the sensitivity of DeepTrends with respect to the
time window size T , the local data size w and the hyper-
parameter �. Figs. 5(a)-5(c) show the RMSE of duration
prediction on Traffic (µ=50), Exchange-rate (µ=6), Solar-
Power (µ=600) by changing one parameter while fixing oth-
ers. It is observed that as T and w increase, RMSE decreases
in general until an optimal value. However, a large � may
hurt the performance. T 2 [32,64], w 2 [8,16,32] and � 2
[10�5,10�4,10�3] give the optimal results. Thus it is reason-
able to set them to 32, 16 and 10

�4 respectively. Moreover,
the non-zero choices of � verify the importance of the pe-
nalization term in the objection function.



Table 3: Trend (duration & slope) prediction results on each dataset.
Dataset Traffic Exchange-Rate Solar-Power Traffic Exchange-Rate Solar-Power

Duration Slope

µ µ µ µ µ µ

Methods Metrics 10 50 170 2 6 20 400 600 800 10 50 170 2 6 20 400 600 800

CNN Rmse 2.1215 3.9815 12.4465 3.5391 6.1490 10.0548 10.0505 15.4735 20.4078 0.1016 0.0270 0.0275 0.0157 0.0120 0.0084 0.0196 0.0170 0.0248
Rrse 1.0265 1.3997 2.0688 26.5035 29.3988 31.4994 2.4176 2.3791 2.5307 0.8938 1.6943 1.1357 43.6662 2.4127 2.9410 1.4979 1.4894 1.5817

LSTM Rmse 2.0466 3.2263 9.0031 3.0915 5.2540 9.0721 8.9872 13.0804 18.5547 0.1539 0.0317 0.0208 0.0158 0.0181 0.0304 0.0134 0.0161 0.0170
Rrse 0.9583 0.8745 0.9000 1.8089 1.7093 1.3682 1.1360 1.1401 1.2885 8.2372 14.9347 1.5882 9.8686 1.6277 1.2297 3.8386 2.1871 2.7085

CLSTM Rmse 2.2803 3.9689 10.3119 3.4449 5.8263 9.3573 8.9829 13.6282 19.1766 0.1062 0.0542 0.0679 0.0164 0.0156 0.0273 0.0142 0.0162 0.0243
Rrse 1.4100 0.9491 1.6693 1.9105 1.7658 14.4338 1.1832 1.6952 1.2246 0.9191 2.1959 2.1812 10.9342 1.6568 1.7672 1.8320 1.3968 1.6294

TreNet Rmse 1.9428 3.0801 9.4828 3.0865 5.2595 8.1762 9.0520 12.9362 18.7838 0.0888 0.0244 0.0258 0.0143 0.0126 0.0148 0.0129 0.0160 0.0351
Rrse 0.8959 0.7253 0.8561 1.8188 1.7208 1.3823 1.1911 1.1852 1.2383 0.7257 1.1628 1.0147 3.7117 1.8401 1.1758 1.3026 1.1661 1.0655

LSTM-m Rmse 2.3541 3.2469 9.8074 3.9940 5.2879 8.3240 8.0060 12.7251 19.2483 0.1293 0.0314 0.0346 0.0142 0.0489 0.0770 0.0122 0.0195 0.0729
Rrse 0.8733 0.7145 0.8474 1.3344 1.6351 1.3863 0.8539 0.9683 1.1861 1.5978 6.7605 1.2966 4.8976 1.6653 1.2051 1.8516 1.3556 1.5496

TreNet-m Rmse 2.2255 3.3440 10.6698 3.9548 7.2710 8.7669 7.9072 12.8988 19.3374 0.0770 0.0231 0.0367 0.0141 0.0226 0.0280 0.0153 0.0451 0.0840
Rrse 0.8530 0.7074 0.8994 1.2471 1.2502 1.2278 0.8433 0.9657 1.2025 0.6983 1.0532 1.0065 4.0165 1.6324 1.1032 1.3940 1.1386 1.1136

ME-LSTM Rmse 1.7984 3.0551 11.7528 3.0501 5.6678 8.3554 7.5384 12.1377 19.4335 0.0949 0.0288 0.0255 0.0166 0.0123 0.0094 0.0126 0.0155 0.0209
Rrse 0.6829 0.7654 0.9819 1.7857 1.1985 1.2548 0.8897 0.8400 1.0669 0.8163 1.8951 1.0729 3.7765 2.4440 2.0697 1.7924 1.3367 1.0595

DTrends-L Rmse 2.2076 3.3460 11.4092 3.7655 5.4440 8.6764 7.7359 12.3016 20.7890 0.0788 0.0242 0.0255 0.0144 0.0150 0.0884 0.0134 0.0186 0.0284
Rrse 0.8191 0.7724 0.8953 1.2020 1.1670 1.0719 0.8037 0.8973 1.1171 0.6419 1.2139 1.1829 3.5058 1.6496 1.1138 2.7451 1.5100 1.3490

DTrends-C Rmse 1.8120 3.0253 10.5177 3.1496 5.8344 8.3924 7.5047 9.8812 15.6963 0.0890 0.0268 0.0188 0.0142 0.0122 0.0251 0.0122 0.0160 0.0163
Rrse 0.6595 0.7762 0.8543 1.1326 1.1973 1.0718 0.8293 0.5995 0.82948 0.6937 1.6592 1.1818 3.3471 1.8354 1.0965 1.3082 1.1578 1.0543

DeepTrends Rmse 1.7587 3.0182 9.4343 2.9920 5.1705 8.2209 7.4439 8.3247 13.5987 0.0763 0.0202 0.0139 0.0140 0.0111 0.0196 0.0119 0.0152 0.0154
Rrse 0.6087 0.7544 0.8412 1.1232 1.1615 1.0668 0.8011 0.5647 0.7114 0.6040 1.1728 1.1543 2.1804 1.3109 1.1288 1.2893 1.1013 1.0448

Related Work
There have been intensive interests in developing prediction
methods on specific data points for its practical importance
(Rangapuram et al. 2018; Liang et al. 2019). A lot of work
in time series forecasting is based on deep learning tech-
niques because of the rapid development of deep neural net-
works (Dong and De Melo 2018a; 2019; Xu et al. 2019c;
Wang et al. 2019b). For example, a dual-stage attention-
based RNN was proposed to predict time series by capturing
long-term temporal dependency and selecting relevant time
series (Qin et al. 2017). The social media data and stock
price signals were exploited jointly for stock movement pre-
diction in a deep generative model (Xu and Cohen 2018).
Some others explored the combinations of recurrent neural
networks with dilation, residual connections and attention
(Chang et al. 2017; Kim, El-Khamy, and Lee 2017). More
recently, the adversarial training was leveraged to improve
the stock movement prediction using an attentive LSTM
(Feng et al. 2019). Based on backward and forward residual
links and a deep stack of fully-connected layers, a deep neu-
ral architecture for interpretable time series forecasting was
proposed (Oreshkin et al. 2019). However, the prediction on
specific data points could deliver limited information about
the semantics and dynamics of time series (Bufo et al. 2014;
Lin, Guo, and Aberer 2017). It is more desirable to learn
and forecast the evolving trend which measures the upward
or downward pattern of time series. There are few efforts to
learn trends in time series data. A hybrid neural network was
proposed to predict trend in univariate time series (Lin, Guo,
and Aberer 2017), in which a trend is characterized by the
slope and duration of the up/down movement of time series.

In many real-world applications, time series are multi-
variate. Because the trend pattern of one time series may
influence others, handling all of them jointly is crucial for
an accurate prediction. Multi-task learning (MTL) is a nat-
ural way to resolve this problem (Caruana 1997). MTL has
been broadly used in image classification (Liu, Johns, and

Davison 2019), natural language processing (Liu et al. 2019)
and video classification (Ma, Li, and Hong 2019). The most
commonly used architecture of MTL is the shared-bottom
model, where several low-level sub-networks are shared by
all tasks and each task has its own task-specific sub-network
(Ruder12 et al. 2019). However, the MTL model may suffer
significant degeneration in performance when tasks are less
related to each other (Ma, Li, and Hong 2019). To resolve
this problem, a memory enhanced model was proposed to
decouple the hidden representations into the task specific
patterns and the shared ones (Liu, Qiu, and Huang 2016).
Some recent work utilized sub-network routing for a flexi-
ble parameter sharing to consider task relatedness (Misra et
al. 2016; Ma et al. 2018; Ma, Li, and Hong 2019). However,
none of them focuses on the recurrent neural networks for
sequence modeling.

Conclusion
In this paper, we propose a deep architecture, DeepTrends,
for learning trends in multivariate time series. The core mod-
ule of DeepTrends is a TLASM network, which is used to
capture the long-term dependency in the historical trend se-
quence. Particularly, TLASM tensorizes the hidden states
to model the complex temporal patterns in different tasks.
An adaptive shared memory is proposed to learn the task
relatedness and dynamically integrates the shared informa-
tion from related tasks into the learning process of individ-
ual task. To consider the short-term dependency between the
local data and the subsequent trend, a multi-task 1dCNN
is designed to extract the features of local raw time series.
A task-specific sub-network is further designed to integrate
the long- and short-term dependency. Extensive experimen-
tal results demonstrate the effectiveness of DeepTrends.
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